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We discuss two possible covariant generalizations of the Aharonov–Bohm effect – one expression in
terms of the space–time line integral of the four-vector potential and the other expression in terms of
the space–time “area” integral of the electric and magnetic fields written in terms of the Faraday 2-form.
These expressions allow one to calculate the Aharonov–Bohm effect for time-dependent situations. In
particular, we use these expressions to study the case of an infinite solenoid with a time varying flux and
find that the phase shift is zero due to a cancellation of the Aharonov–Bohm phase shift with a phase
shift coming from the Lorentz force associated with the electric field, E = −∂t A, outside the solenoid.
This result may already have been confirmed experimentally.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Aharonov–Bohm (AB) effect [1,2] lies at the interface of
gauge theories and quantum mechanics. In its best known form,
the AB effect predicts a shift in the interference pattern of the
quantum mechanical double-slit experiment which has a magnetic
flux carrying solenoid placed between the slits. If a solenoid with
a magnetic field B = ∇ × A (where A is the electromagnetic vector
potential) is placed between the two slits of a double-slit exper-
iment the phase, α, of the wave-function of the electrons going
through the slits and following some path to the screen will be
shifted by an amount

αB = − e

h̄

∫
path

A · dx (1)

where e is the charge of the electron. If one considers two elec-
trons arriving at the screen via two separate paths, namely path1
and path2, one can reverse one of the paths and find that the phase
difference between the two electrons at the screen is given by

δαB = αB1 − αB2 = e

h̄

∮
2−1

A · dx = e

h̄

∫
B · dS = e

h̄
Φ0 (2)

where the subscript 2 − 1 means the path going from the slits
to the screen along path2 and returning along path1. We used
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Stokes’ theorem on the closed line integral and ∇ × A = B. Fi-
nally, Φ0 is the magnetic flux through the cross sectional area, S,
of the solenoid. This shift in the phase leads to a shift in the po-
sition, x, of the interference pattern maxima and minima on the
screen by �x = Lλ

2πd δαB where L is the distance to the screen,
d is the distance between the slits and λ is the wavelength of the
wave-function. This shift due to the magnetic AB effect has been
measured [3,4]. Note, there is some unavoidable arbitrariness in
the sign δαB depending on the rotational sense of the closed loop
going around the solenoid – going along path1 to the screen and
returning along path2 versus going along path2 to the screen and
returning along path1. However, the shift of the interference pat-
tern is independent of this arbitrariness.

The importance of the magnetic AB effect of (2) is that it shows
(to some degree) the physical nature of the vector potential, A,
since the electrons move in a region, outside the solenoid, where
B = 0 but A �= 0. However, although A is gauge variant under the
gauge transformation A → A−∇Λ, where Λ(x, t) is some arbitrary
function, the final result in the phase difference, δαB , is gauge in-
dependent since it can be turned into a surface integral of the
magnetic field, which is gauge invariant.

The electric version of the AB effect has been less discussed
and investigated. It was experimentally observed relatively recently
in [5]. Similar to the magnetic case above, one can show [1] that
for an electron moving through some region of space with an
electric scalar potential φ, it will have its phase shifted by an
amount

αE = e

h̄

t2∫
t1

φ dt (3)
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where �t = t2 − t1 is the time the electron spends in the poten-
tial. If one considers electrons moving along two different paths,
path1 and path2, with different values of the potential, φ1 and φ2,
along the different paths, then the electrons will acquire a phase
difference due to traveling in different potentials given by

δαE = e

h̄

t2∫
t1

�φ dt = e

h̄

t2∫
t1

∫
E · dx dt (4)

where �φ = φ2 − φ1 = − ∫ 1
2 ∇φ · dx = ∫

E · dx is the potential dif-
ference between the two paths through which the electrons move.
The last form of the electric phase shift in (4), i.e. e

h̄

∫ t2
t1

∫
E · dx dt ,

appears similar to the last form of the magnetic phase shift in (2),
i.e. e

h̄

∫
B ·dS, in that both have the form δ(Phase) ∝ (Field)× (Area)

although for the electric phase shift the “area” has one space side
and one time side while the magnetic phase shift has a conven-
tional area having two space sides. One can flesh out this con-
nection via the following heuristic argument: For a small distance,
�x, between the two different potentials, φ2 and φ1, one can write
�φ = E ·�x. Using this in the first expression in (4), one can write
δαE = e

h̄ (E · �x)�t , where again �t is the time that the two elec-
trons spend in their respective potentials. Now �t ∝ L where L is
the length of the region through which the electrons move where
the potentials are φ2 and φ1 – more precisely ve�t = L where
ve is the speed of the electrons as they move through these re-
gions of constant scalar potential. Combining these results, we find
δαE ∝ (E · �x)L, and (�x)L is the area between the two tubes of
length L separated by a distance �x, i.e. d(Area) = (�x)L. Thus,
both magnetic and electric AB phase differences from (2) and (4)
can be written in the form δ(Phase) ∝ (Field) × (Area). Pictorially,
one can see this (Area) as the area swept out by an imaginary
string which connects the two electrons – the length of the string
is �x and the length swept out is L. Note that the phase dif-
ference in (4) is in addition to any phase difference due to the
path length difference between path1 and path2. Also, as in the
magnetic case (2), there is an unavoidable sign ambiguity in (4)
depending whether one considers �x as coming from a path go-
ing from φ1 to φ2 or, alternatively, a reversed path going from φ2
to φ1.

The expressions (2) and (4) are written in three-vector form
so they are not obviously covariant. In the next section, we ex-
amine two possible covariant generalizations of the AB phase dif-
ferences (2) and (4) which allow one to examine time-dependent
Aharonov–Bohm experiments.

2. Covariant expressions for the AB phase shift

The first covariant version of the AB phase differences general-
izes the potential form of the phase difference given by the first
expressions on the right hand side of (2) and (4)

δαE B = e

h̄

∮
Aμ dxμ = e

h̄

[ t2∫
t1

�φ dt −
∮

A · dx

]
. (5)

This covariant expression for the AB phase shift was used in [1].
The closed loop integral in the four-vector expression,

∮
Aμ dxμ ,

is not a closed time loop but is to be taken in the sense that
the two electrons both start at the space–time point (ti,xi), travel
along two different paths, path1 and path2, and end up at the same
space–time point (t f ,x f ) with t f > ti . One reverses the direction
of one of the paths and in this way gets �φ = φ2 − φ1 in the
time integral and one gets a closed loop for the spatial integral, i.e.∮

A · dx.

The second covariant version of the AB phase difference gen-
eralizes the (Field) × (Area) form of the phase difference, i.e. the
last two expressions for the magnetic and electric phase differ-
ences given in (2) and (4). This second covariant version of the
AB phase is best expressed in the notation of differential forms
and the wedge product.1 This second proposed expression for the
covariant AB phase is

δαE B = − e

2h̄

∫
Fμν dxμ ∧ dxν = e

h̄

∫
F (6)

where F = − 1
2 Fμν dxμ ∧ dxν is the Faraday 2-form, dxμ and dxν

are differential four-vectors, and ∧ is the anti-symmetric wedge
product [6]. The factor of 1

2 accounts for the anti-symmetry of Fμν

and dxμ ∧ dxν .
We now expand the Faraday 2-form out, and show that it re-

produces the standard, static AB phase results (2) and (4),

F = −1

2
Fμν dxμ ∧ dxν

= (Ex dx + E y dy + Ez dz) ∧ dt + Bx dy ∧ dz + B y dz ∧ dx

+ Bz dx ∧ dy. (7)

If the electric field is zero, i.e. E = 0, then one has F = Bx dy ∧
dz + B y dz ∧ dx + Bz dx ∧ dy = B · dS where the differential forms
expression has been converted back to three-vector notation and
dS is the differential area. Thus, the expression in (6) reduces to
δαE B = e

h̄

∫
F = e

h̄

∫
B · dS which is equivalent to the three-vector

expression (2).
If, on the other hand, the magnetic field is zero, i.e. B = 0,

and one has a time independent system (so that ∂t A = 0 and
E = −∇φ), then the non-zero terms of the Faraday 2-form are
F = −∂xφ dx ∧dt − ∂yφ dy ∧dt − ∂zφ dz ∧dt . Doing the spatial inte-

gral of this expression for the Faraday 2-form yields − ∫ 1
2 ∇φ ·dx =

φ2 − φ1 = �φ. Thus, under these conditions, the expression in (6)
reduces to δαE B = e

h̄

∫
F = e

h̄

∫
�φ dt which is equivalent to the

first three-vector expression on the right hand side of (4).
In summary, in this section, we have constructed two covari-

ant versions of the AB phase difference, (5) and (6). In the next
section, we will discuss how one can experimentally test these co-
variant expressions for the AB phase difference, (5) or (6), in the
time-dependent situation of an infinite solenoid with a time vary-
ing magnetic flux.

3. Solenoid with time varying flux

For static situations, both (5) and (6) reproduce the results for
the magnetic and electric AB phase differences (2) and (4). How-
ever, for certain time-dependent situations, the two expressions
both lead to the conclusion that there is an exact cancellation of
the magnetic and electric AB phase shifts so that one finds no net
phase shift differences coming from the time-dependent electro-
magnetic field. In particular, we have in mind the usual magnetic
AB set-up of an infinite solenoid but with a time-dependent mag-
netic field and vector potential, i.e. B(t), and A(t). Note that for this
situation the scalar potential is still zero, φ = 0. At first, one might
think that for this set-up the AB phase would simply be obtained
by inserting A(t) into the first expression on the right hand side
of (2), or inserting B(t) into the second expression on the right
hand side of (2), giving the usual magnetic AB phase shift (2) but
with the time dependence of the vector potential, i.e. δαB ∝ Φ0(t).
This is in fact what previous work [7–9] on the time-dependent AB

1 For our purposes the elementary and excellent introduction to differential forms
given in [6] is all we will need.
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