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The formation of spacetime singularities is a quite common phenomenon in General Relativity and it is
regulated by specific theorems. It is widely believed that spacetime singularities do not exist in Nature,
but that they represent a limitation of the classical theory. While we do not yet have any solid theory
of quantum gravity, toy models of black hole solutions without singularities have been proposed. So far,
there are only non-rotating regular black holes in the literature. These metrics can be hardly tested by
astrophysical observations, as the black hole spin plays a fundamental role in any astrophysical process.
In this Letter, we apply the Newman-Janis algorithm to the Hayward and to the Bardeen black hole
metrics. In both cases, we obtain a family of rotating solutions. Every solution corresponds to a different
matter configuration. Each family has one solution with special properties, which can be written in
Kerr-like form in Boyer-Lindquist coordinates. These special solutions are of Petrov type D, they are
singularity free, but they violate the weak energy condition for a non-vanishing spin and their curvature
invariants have different values at r = 0 depending on the way one approaches the origin. We propose
a natural prescription to have rotating solutions with a minimal violation of the weak energy condition

and without the questionable property of the curvature invariants at the origin.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Under the main assumptions of the validity of the strong en-
ergy condition and of the existence of global hyperbolicity, in Gen-
eral Relativity collapsing matter forms spacetime singularities [1].
At a singularity, predictability is lost and standard physics breaks
down. In analogy with the appearance of divergent quantities in
other classical theories, it is widely believed that even spacetime
singularities are a symptom of the limitations of General Relativ-
ity and that they must be solved in a theory of quantum gravity.
While quantum gravity effects are traditionally thought to show
up at the Planck scale, Lp; ~ 10733 cm, making experimental and
observational tests likely impossible, more recent studies have put
forward a different idea [2,3]: Lp; would be the quantum gravity
scale for a system of a few particles, while the quantum gravity
scale for systems with many constituents would be its gravita-
tional radius. In these frameworks, even astrophysical black holes
(BHs) of tens or millions Solar masses may be intrinsically quan-
tum objects, macroscopically different from the Kerr BHs predicted
in General Relativity.
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While we do not yet have any mature and reliable candidate for
a quantum theory of gravity, more phenomenological approaches
have tried to somehow solve these singularities and study possible
implications. In this context, an important line of research is rep-
resented by the work on the so-called regular BH solutions [4-7].
These spacetimes have an event horizon and no pathological fea-
tures like singularities or regions with closed timelike curves.
Of course, their metric is not a solution of Einstein’s vacuum equa-
tions, but they can be introduced either with some exotic field,
usually some form of non-linear electrodynamics, or modifications
to gravity. They can avoid the singularity theorems because they
meet the weak energy condition, but not the strong one.

The purpose of the present Letter is to construct rotating regu-
lar BH solutions. This is a necessary step to test these metrics with
astrophysical observations [8-10]. The spin enters as the current-
dipole moment of the gravitational field of a compact object and
it is thus the leading order correction to the mass-monopole term.
It is not possible to constrain deviations from classical predictions
without an independent estimate of the spin. However, exact rotat-
ing BH solutions different from the classical Kerr-Newman metric
are very hard to find. In most cases, including all the regular BH
metrics currently available in the literature, we know only the non-
rotating solution. In a few cases, we have an approximated solution
valid in the slow-rotation limit [11], which is also not very useful
for tests. A rotating solution in the Einstein-Gauss-Bonnet-dilaton
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gravity has been recently found numerically in Ref. [12], while
proposals for some rotating quantum BHs have been suggested in
[13,14].

2. Newman-Janis algorithm

Our strategy is to use the Newman-Janis transformation [15]
(for more details, see Ref. [16]). Roughly speaking, the algorithm
starts with a non-rotating spacetime and, at the end of the proce-
dure, the spacetime has an asymptotic notion of angular momen-
tum. The starting point is a spherically symmetric spacetime

2
ds? = f(r)dt* — % — h(r)(d6? + sin 0 dg?). (1)

The first step of the algorithm is a transformation to get null coor-
dinates {u,r, 0, ¢}, where

du=dt —dr/f(r). (2)

The second step is to find a null tetrad Z5 = (I, n*, mH, mH) for
the inverse matrix in null coordinates

g*v =1*nY +1"'n* — m*m¥ — m"m*, (3)
where the tetrad vectors satisfy the relations
LW =mymt =n,n* =1,m" = n,Lm“ =0,
Lt = —m,mt =1, (4)
and x is the complex conjugate of the general quantity x. One finds
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The third step of the procedure is the combination of two opera-
tions. A complex transformation in the r — u plane as follows

r—r1r =r+iacosé, u—u =u—iacoso, (6)

together with a complexification of the functions f(r) and h(r) of
the metric. The new tetrad vectors are

It = sk =k — f(zr/)cSﬁ,
1 i
mh = —— <ia sin6 (8} — &) + 8 + .75:;), (7)
/Zh(r/) sin

where f(r') and E(r’) are real functions on the complex domain.
This step of the procedure is in principle completely arbitrary.
In fact, in the original paper, Newman and Janis could not give
a true explanation of the procedure if not that it works for the
Kerr metric with a particular choice of the complexifications. The
situation improved with Drake and Szekeres in [16], where the au-
thors proved that the only Petrov D spacetime generated by the
Newman-Janis algorithm with a vanishing Ricci scalar is the Kerr-
Newman solution. Using the new tetrad in Eq. (3), we find the new
inverse metric and then the metric. The non-vanishing coefficients
of g, are

gu=F0),  gu=gu=1,

Sup = 8pu = asin? (1 — f(r,0)),

8o =gpr =asin®0,  ggg = —h(r,0),

g9 = —sin?O[h(r,0) +asin?0(2 — f(r,0))]. (8)

The fourth and last step of the algorithm is a change of coordinates.
In some cases, we can write the metric in the Boyer-Lindquist
form, in which the only non-vanishing off-diagonal term is gig.
This requires a coordinate transformation of the form

du=dt’ + F(r)dr, dp =d¢’ + G(r)dr, (9)
where
_ h(r, ) + a®sin® 6
fr,0)h(r,0) +a2sin®0’
Gr) - (10)

- f@r,0)h(r,0)+a?sin®6’

This transformation is possible only when F and G depend on
the coordinate r only. In general, however, the expressions on the
right hand sides of (10) depend also on 6, and we cannot perform
a global transformation of the form (9). If the transformation (9)
is allowed and we go to Boyer-Lindquist coordinates, the non-
vanishing metric coefficients of the rotating BH metric are:

ge=f0),  g¢=gs=asin’0(1-f(r.9),
h(r,6)
B R O F(r.0) + dsin?6
8o = —h(r,0),
8o = —sin® O[h(r,0) +a*sin®0(2 — f(r,0))]. (11)

In the case of the Schwarzschild solution, we have f(r) =
1—2M/r and h(r) =r2. In the Newman-Janis algorithm, we have
to choose a complexification of the 1/r and of the r? term. In gen-
eral, this prescription is not unique. However, since we know what
the Kerr solution is, we know that if we take the following com-
plexification

1 1/1 1 _
—==l=+=) r2 -1’7, (12)
r 2\r 1

then this trick works well. The functions f(r) and h(r) become

~ 2Mr ~
f(r)—>f(r,9)=1—7, h(r) — h(r,0) = X, (13)
where ¥ =12 + a?cos?6. In this case, the functions F and G in
Eq. (10) depend on r only and we find the Kerr solution in Boyer-—
Lindquist coordinates

2
ds? = (1 2T dt2+wdtd¢—£dr2—2d92
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2a2Mrsin29>d¢2’ (14)

—sin?6 <r2 +a® +
where A =12 — 2Mr +d?.
3. Hayward black hole

As first example of regular black hole, we consider the Hayward
metric, whose analytic expression is quite simple [6]. The line ele-
ment is given by Eq. (1), with the following f(r)

fry=1-2" =My (15)
N=1-—, m=m@)= ,

r r+g3
where M is the BH mass and g is some real positive constant mea-
suring the deviations from the classical Kerr metric. Let us note
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