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Theoretical proposals of scaling laws for the differential elastic scattering cross sections of protons are
confronted with experimental data over a wide energy range. Different combinations of the transferred
momentum and energy resulting from the solution of the definite partial differential equation are
attempted as scaling variables. Reasonable scaling of the differential cross sections in the diffraction cone
has been shown for one of these variables. The violation of the geometrical scaling is ascribed to the
increase of the proton blackness with energy. The origin of high-t region violations of scaling laws is
discussed.
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The differential cross section for elastic scattering of particles
dσ(s, t)/dt is the only measurable characteristics of this process.
At any fixed energy s, one presents a one-dimensional plot of its
dependence on the transferred momentum t . However, the pos-
sibility that the differential cross sections might be described as
functions of a single scaling variable representing a definite com-
bination of energy and transferred momentum has been discussed
[8,11]. No rigorous proof of this assumption has been proposed.
Recently this property was obtained [16,17] from the solution of
the partial differential equation for the imaginary part Im A(s, t)
of the elastic scattering amplitude. The equation has been derived
by equating the two expressions for the ratio of the real to imag-
inary parts of the amplitude ρ(s, t). They were known from the
local dispersion relations [20,10,18,19] with the s-derivative and
from the linear t-approximation [8,21] with the t-derivative. These
expressions are, correspondingly,

ρ(s, t) = π

2

[
∂ ln Im A(s, t)

∂ ln s
− 1

]
(1)

and

ρ(s, t) = ρ(s,0)

[
1 + ∂ ln Im A(s, t)

∂ ln |t|
]
. (2)

Therefrom the following partial differential equation is valid

p − f (x)q = 1 + f (x), (3)
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where p = ∂u/∂x; q = ∂u/∂ y; u = ln Im A(s, t); f (x) = 2ρ(s,0)/

π ≈ d lnσt/dx; x = ln s; y = ln |t|; σt is the total cross section. The
variables s and |t| should be considered as scaled by the corre-
sponding constant factors s−1

0 and |t0|−1.
Eq. (3) can be rewritten as

∂u

∂ lnσt
− ∂u

∂ ln t
= 1 + d ln s

d lnσt
. (4)

The general solution of Eq. (4) reveals the scaling law

t

s
Im A(s, t) = φ(tσt). (5)

For the differential cross section it looks like

t2dσ/dt = φ2(tσt), (6)

if the real part of the amplitude is neglected compared to the
imaginary part. Thus the scaling law is predicted not for the differ-
ential cross section itself but for its product to t2. Let us note that
the often used ratio (see, e.g., [9]) of dσ/dt to dσ/dt|t=0 ∝ σ 2

t is
also a scaling function at the tσt -scale. However, expression (6) is
more suitable for comparison with experiment.

The scaling law with the tσt -scale is known as “geometrical
scaling”. Different aspects of its violation are often discussed. Here
we contribute another view of this problem.

The geometrical scaling violation is seen in Fig. 1 in the diffrac-
tion cone especially for the TOTEM data at 7 TeV. With the com-
mon approximation dσ/dt ∝ exp(Bt) in the diffraction cone one
gets that the maximum of the function t2dσ/dt displayed in Fig. 1
should be positioned at tmσt = 2σt/B = 16π(1 − exp(−Ω(s))). It
is important that it depends only on the opacity of protons Ω(s)
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Fig. 1. (Color online.) The values of t2dσ/dt for pp-scattering at energies
√

s from 4.4 GeV to 7 TeV as functions of tσt with σt provided by the corresponding experiment.
The scale on the abscissa axis is defined by t0 = −1 GeV2 and σt in GeV−2. The data are from [1,2,6,5].

(see the Table 1 in the review paper [14,12]) but not on their radii.
The shift of the maximum is completely determined by the energy
increase of the opacity. The relation of the opacity Ω(s,b) at any
given impact parameter b with the amplitude looks like

A
(
s, t = −q2) = 2is

∫
d2beiqb(

1 − e−Ω(s,b)
)
. (7)

The scaling is violated due to the stronger energy dependence
of σt compared to the diffraction cone slope B observed in exper-
iment. Their ratio is approximately proportional to the ratio of the
elastic to total cross sections because

σt(1 + ρ2(s, t = 0))

16π B
≈ σel

σt
(8)

which, in its turn, is defined by the blackness of protons. Their
energy dependencies coincide only if the opacity saturates.

Thus this simple geometrical scaling is not fulfilled at very high
energies, even at low transferred momenta. We show below how
this problem can be cured. Moreover, the scaling is much more
strongly violated outside the diffraction region. It is also discussed
in what follows.

In attempts to cure these problems we turn to the assumptions
used in the derivation of the scaling law (6). The neglect by the
real part of the amplitude in (6) is the most evident one. Its con-
tribution is easily estimated using Eqs. (1), (2). One gets

t2dσ/dt = φ2(tσt)
[
1 + (

d ln φ/d ln(tσt)
)2

ρ2(s, t = 0)
]
. (9)

The second term violates scaling – albeit it is very small because
of smallness of ρ(s, t = 0) and does not pose any problem.

Another approximation is involved in the relation (1). It was
guessed as the extension to non-zero transferred momenta of the
first term in the series expansion of the exact expression for
ρ(s,0) which looks like

ρ(s,0) ≈ 1

σt

[
tan

(
π

2

d

d ln s

)]
σt

= 1

σt

[
π

2

d

d ln s
+ 1

3

(
π

2

)3 d3

d ln s3
+ · · ·

]
σt . (10)

The terms with higher derivatives s were neglected. This assump-
tion is quite reasonable because their contribution seems negligible
for experimentally measured energy dependence of σt and to any
analytical fits.

More serious questions arise concerning Eq. (2). It looks as if
only the first term in the t-expansion of ρ(s, t) is taken into ac-
count in this relation. It could be satisfactory in the diffraction
cone where Im A(s, t) ∝ exp(Bt/2). Let us note here that accord-
ing to (2) ρ(s, t) should become ever smaller in the diffraction
cone crossing zero at t = tm and be negative at larger |t|. More-
over, even dealing within a linear approximation, one gets negative
values of ρ in the region directly attached to the diffraction cone
(known as the Orear region by the name of its discoverer) if ρ(s, t)
is approximated by its constant average value there [13].

The behavior of ρ(s, t) may become there strongly non-linear
in t [13]. The solution of the unitarity equation for the imag-
inary part of the amplitude in the Orear region [3,4] (see also
the review paper [14,12]) u ∝ −[2B ln(4π B/σt fρ)|t|]0.5 is quite
complicated and does not seem to satisfy the scaling law. Here,
fρ = 1 + ρ(s,0)ρl with ρl denoting the average value of ρ in this
region. If ρl is replaced by the non-averaged ρ(s, t) and such u in-
serted in Eq. (2), then the derivative of the imaginary part naturally
produces the derivative of ρ(t). The resulting differential equation
for ρ(t) was solved. The strongly non-linear t-dependence with
large negative values of ρ in the Orear region was obtained. The
more rigorous approach was also attempted.

These indications suit quite well the results of the fit in the
Orear region at 7 TeV [15] where the negative and quite large val-
ues of ρ ≈ −2.1 had to be chosen in that region. No such tendency
is provided directly by Eq. (2).

The violation of the simple geometrical scaling law (6) is clearly
seen in Fig. 1. In the diffraction cone it is rather well satisfied at
most energies except the highest one of 7 TeV. In the Orear region
there is no scaling even at lower energies. We ascribe it to neces-
sary modifications of Eq. (2). Until now we are unable to propose
any admissible generalization of Eq. (2) at large t .

Nevertheless, we try to modify it at small t in such a way to get
better scaling inside the diffraction cone even at 7 TeV compared
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