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A magnetic field and the resulting Landau degeneracy enhance the infrared contributions to the quark
mass gap. The gap does not grow arbitrarily, however, for models of asymptotic free interactions. For
B → ∞, the magnetic field decouples from the dimensionally reduced self-consistent equations, so that
the gap behaves as ∼ ΛQCD (or less), instead of ∼ √|eB|. On the other hand, the number of participants
to the chiral condensate keeps increasing as ∼ |eB| so that |〈ψ̄ψ〉| ∼ |eB|ΛQCD. After the mass gap stops
developing, nothing tempers the growth of screening effects as B → ∞. These features are utilized to
interpret the reduction of critical temperatures for the chiral and deconfinement phase transitions at
finite B , recently found on the lattice. The structures of mesons are analyzed and light mesons are
identified. Applications for cold, dense quark matter are also briefly discussed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In past decades, systems in a magnetic field (B) have been
useful laboratories to test theoretical ideas. A famous example is
a system of cold atoms, in which a magnetic field controls the
strength of the interactions. In QCD, similar utilities are also ex-
pected for the lattice Monte Carlo simulation at finite B [1–4].
In particular, we can study the nonperturbative gluon dynamics
through polarization effects, controlling quark dynamics by a mag-
netic field. Such information may help the studies of cold, dense
quark matter [5].

It seems that lattice studies already confirmed some of the the-
oretical ideas. At T = 0, a magnetic field enhances the size of the
chiral condensate due to magnetic catalysis [6,7]. A key feature of
this phenomenon is the effective dimensional reduction. For B 	= 0,
the phase space for the low energy particles and anti-particles is
∼ |eB| ∫ dp‖ , increasing the number of participants to the forma-
tion of the chiral condensate. This should be contrast to the B = 0
case, where phase space quickly decreases as ∼ ∫ |p|2 d|p| in the
infrared region. In this case, due to the small number of partici-
pants, the system needs sufficiently strong attractive forces to form
chiral condensates.

On the other hand, some surprises have been provided as
well [4]. While B increases the chiral condensate below the
(pseudo-)critical temperatures for the chiral restoration (Tχ ) and
deconfinement (TD), those temperatures themselves decrease. This
might contradict with our intuitions, if we think that a larger
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chiral condensate should generate a greater quark mass gap. Such
thinking would suggest that (i) a larger quark mass gap should
suppress thermal quark fluctuations, leading to increasing Tχ , and
(ii) a larger quark mass gap suppresses quark loops, so that the
results should approach to the pure gauge results, leading to in-
creasing TD.

To resolve this apparent contradiction, we shall argue that the
quark mass gap at T = 0 can stay around ∼ ΛQCD (or less) for
large B . Then we can imagine that the gap at T < Tχ,D also stays
around ∼ ΛQCD, without strongly suppressing thermal quark fluc-
tuations and quark loops. If this is the case, the decreasing of
critical temperatures would not be so unnatural.

In addition, the aforementioned behavior of the quark mass
gap does not contradict with the growing behavior of the chi-
ral condensate, but instead naturally explains its B-dependence
at T = 0. In fact, the lattice results in [4] showed the behavior
〈ψ̄ψ〉B

T =0 ∼ |eB|ΛQCD, for |eB| � 0.3 GeV2 � Λ2
QCD (� 0.04 GeV2).

Noting that the relation under the Landau quantization,

〈ψ̄ψ〉4D ∼ |eB| × 〈ψ̄ψ〉2D, (1)

we can see that 〈ψ̄ψ〉2D or the quark mass gap must be nearly
B-independent and O (ΛQCD).

In this work we will carry out all the calculations in the large
Nc limit.1 The use of the large Nc is motivated by at least three
reasons: (i) At large Nc, gluons are not screened, so the nonpertur-
bative forces (i.e. the forces in the infrared) are stronger than the
Nc = 3 case. Such forces can be used to set the upper bound of the

1 The large Nc limit in a magnetic field was also studied in Ref. [9] from a differ-
ent perspective from ours.
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Fig. 1. (a) The Schwinger–Dyson equation at large Nc for the model in Eq. (4). (b) The distribution of states in the lowest Landau level for fixed pz . A state with momentum
p⊥ can strongly couple to states within a domain of |q⊥ − p⊥| � Λ f ∼ ΛQCD.

quark mass gap. (ii) The large Nc limit has captured many qualita-
tive aspects of the confined phase at B = 0. Therefore it is worth
thinking and testing this approximation in the confined phase at
finite B , since its validity and invalidity are not evident a priori.
(iii) It is easy to imagine how the 1/Nc corrections qualitatively
modify the large Nc results, and such corrections just provide wel-
comed effects for our scenario (see below).

We will use the large Nc limit to just claim that the quark
mass gap does not grow much beyond ΛQCD. To explain the reduc-
tion of the critical temperatures, in addition we have to argue the
1/Nc corrections. The quark loops as the 1/Nc corrections screen
the nonperturbative forces. As B increases, the screening effects
become larger because more low energy particles can participate
to the gluon polarization, due to the enhanced Landau degener-
acy ∼ |eB| in the lowest Landau level (LLL) [8]. If the quark mass
gap stops growing as suggested in our scenario, there is nothing
to suppress the growth of the screening effects as B increases.2

Therefore the nonperturbative forces are reduced at large B , and
such reduction should lower the critical temperatures for given B .
In addition, hadronic fluctuations as the 1/Nc corrections also
grow as B increases, helping the chiral symmetry to restore [10].3

We will argue that the demanded (nearly) B-independent gap
of O (ΛQCD) can be derived, provided that it is dominantly cre-
ated by the nonperturbative force mediated by the IR gluons. In
particular, both the IR enhancement (that is more drastic than the
perturbative 1/p2 case) and the UV suppression of the gluon ex-
changes are crucial for our discussions. Since we will deal with
the LLL which is essentially soft physics in the present Letter, IR
enhanced gluon is a key feature in this study (see [12] for a re-
view). If we include only the perturbative 1/p2 force, the gap is
much smaller than ΛQCD and depends on B at most logarithmi-
cally. Similar arguments have been used in studies of the quark
mass function at finite quark density [13,14].

To illustrate our points, we first consider the NJL model which
does not have the abovementioned properties. For |eB| → ∞, the
gap equation within the LLL approximation is

MNJL(B) = G tr S(x, x)

→ G
|eB|
2π

∫
dqz

2π

MNJL(B)√
q2

z + M2
NJL(B)

f (qz, B;Λ), (2)

where f (qz, B;Λ) is some UV regulator function. The contact in-
teraction couples all states in the LLL so that the Landau degen-

2 This suggests that even at T = 0, the nonperturbative gluons will be screened
out at some critical value of B such that the screening mass, mD ∼ gs|eB|1/2 ∼
N−1/2

c |eB|1/2, becomes comparable to ΛQCD (see also Section 4).
3 For hadronic fluctuations at small |eB|, see Ref. [11], where chiral perturbation

theory should be at work.

eracy factor |eB| for the LLL appears. The intrinsic property of the
model is that the chiral condensate has the same B-dependence as
the mass gap:

〈ψ̄ψ〉B
NJL � − 1

G
MNJL(B). (3)

Depending on the regularization schemes, MNJL(B) can be ∼ |eB|1/2

(proper time regularization [15]), or ∼ Λ (four momentum cutoff
[10]), or else. Each scheme has its own problems. For schemes
predicting the growing behavior of the chiral condensate [16], the
quark mass gap also develops as B increases. Then at finite tem-
perature, thermal quark contributions are largely reduced so that
the increasing chiral restoration temperature is naturally expected.
On the other hand, if the mass gap approaches to constant, the
chiral condensate also does, contradicting with the lattice results.
Therefore, as far as the relation like (3) is retained, it seems that
we have to abandon either the increasing chiral condensate or the
reduction of critical temperatures.

This dilemma can be bypassed if we use the gluon exchange
type interactions with the IR enhancement and UV suppression. To
emphasize the point, we consider a simple model for the gluon
exchange with these features (for the moment we ignore spinor
structures),

D(q) = Gθ
(
Λ2

f − �q2) (Λ f ∼ ΛQCD) (4)

which was proposed in [14]. In this model, the quark mass
function appears to be momentum dependent. For B → ∞, the
Schwinger–Dyson equation at large Nc (Fig. 1a) is

M(p; B) � G

∫
d4q

(2π)4
tr SLLL

2D (qz)θ
(
Λ2

f − |�p − �q|2), (5)

where B is used to reduce the quark propagator to the (1 + 1)-
dimensional one and to separate higher Landau levels from the LLL.
In contrast to the previous case, the factor |eB| does not appear in
front of the integral. This is because the interaction (4) does not
couple all the states in the LLL, but couples the states having sim-
ilar momenta (Fig. 1b). This feature makes the gap B-independent.
In fact, carrying out the integral over the transverse momenta,
we get

M(p; B) � G

2π

∫
dqz

2π

M(q; B)√
q2

z + M2(q; B)

× θ
(
Λ2

f − |pz − qz|2
)

F (pz − qz), (6)

where F (kz) =
√

Λ2
f − |kz|2. Note that the equation does not have

any explicit B dependence, so the mass gap is solely determined
by the scale Λ f , i.e. M(p; B) = MΛ f (p).
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