
Physics Letters B 720 (2013) 198–204

Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Evaporation of (quantum) black holes and energy conservation

R. Torres a, F. Fayos a, O. Lorente-Espín b,∗
a Department of Applied Physics, UPC, Barcelona, Spain
b Department of Physics and Nuclear Engineering, UPC, Barcelona, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 December 2012
Accepted 28 January 2013
Available online 1 February 2013
Editor: M. Cvetič
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We consider Hawking radiation as due to a tunneling process in a black hole were quantum corrections,
derived from Quantum Einstein Gravity, are taken into account. The consequent derivation, satisfying
conservation laws, leads to a deviation from an exact thermal spectrum. This has consequences for the
information loss paradox since the non-thermal radiation is shown to carry information out of the black
hole. Under the appropriate approximation, a quantum corrected temperature is assigned to the black
hole. The evolution of the quantum black hole as it evaporates is then described by taking into account
the full implications of energy conservation as well as the backscattered radiation. It is shown that, as
a critical mass of the order of Planck’s mass is reached, the evaporation process decelerates abruptly
while the black hole mass decays towards this critical mass.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Based on results of quantum field theory on a fixed curved
background (Schwarzschild’s solution) Hawking showed in 1975
[1] that black holes radiate a thermal spectrum of particles and
derived an exact expression for their entropy. Only recently [2]
Hawking radiation has been derived taking into account the back-
reaction effect of the radiation on the black hole thanks to the re-
quirement of energy conservation. Moreover, the method proposed
in [2] corresponds with the heuristic picture most commonly pro-
posed of pair creation near the horizon of the black hole and the
corresponding tunneling of particles.

One of the most interesting features of the tunneling method
is that it shows that new terms appear in the distribution func-
tion which deviate it from pure thermal emission, i.e. the standard
Boltzmann distribution. Since the claim of information loss in black
holes [3] has as one of its pillars that black holes have an ex-
act thermal spectrum, it seems that the deviation from thermality
could have consequences for the information loss paradox, i.e., the
radiation could allow the information to escape the black hole.

Of course, this picture is incomplete since, in order to describe
the last stages of black hole evaporation, one should take into ac-
count quantum gravity effects. A step in this direction was taken
by Bonanno and Reuter in [4] by introducing an effective quan-
tum spacetime for spherically symmetric black holes based on the
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Quantum Einstein Gravity approach. They did this by using the
idea of the Wilsonian renormalization group [5] in order to study
quantum effects in the Schwarzschild spacetime. Specifically, they
obtained a renormalization group improvement of the Schwarzschild
metric based upon a scale dependent Newton constant G obtained
from the exact renormalization group equation for gravity [6] de-
scribing the scale dependence of the effective average action [7,8].
Later, in [9], the same authors described the strict thermal evolu-
tion of the improved black hole by estimating Hawking’s energy
flux directly from Stefan–Boltzmann’s law.

Our aim in this Letter is to analyze the evaporation of a quan-
tum black hole (specifically, the solution found in [4]) thanks to
the consideration of a tunneling process in its horizon and, conse-
quently, satisfying energy conservation. This has to allow us to find
the quantum corrections to the temperature of the quantum black
hole under the appropriate approximations. On the other hand, our
study of the evolution of the evaporating quantum black hole sat-
isfying energy conservation will take into account the effect of the
non-negligible backscattered radiation. This analysis is intended to
shed some light into the escape of information from black holes
throughout their complete evaporation process as well as into the
study of the lasts stages of their evaporation.

The Letter has been divided as follows. Section 2 introduces the
solution for the quantum black hole (the improved Schwarzschild
spacetime) and its main properties. In Section 3 we summarize
black hole radiation according to the tunneling method in an ex-
tended improved Schwarzschild spacetime. In Section 4 we con-
sider the backscattering of the emitted radiation taking into ac-
count energy conservation. This allows us, in Section 5, to evaluate
the luminosity of a quantum black hole when energy conservation
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is imposed and to compare it with the standard ‘thermal’ result.
The evolution of an evaporating quantum black hole fulfilling en-
ergy conservation is treated in Section 6. In Section 7 we analyze
the escape of information throughout the evaporation process. Fi-
nally the results are discussed in Section 8.

2. Improved Schwarzschild solution

The renormalization group improved Schwarzschild solution found
by Bonanno and Reuter [4] can be written as

ds2 = −
(

1 − 2G(R)M

R

)
dt2

S

+
(

1 − 2G(R)M

R

)−1

dR2 + R2 dΩ2, (2.1)

where

G(R) = G0 R3

R3 + ω̃G0(R + γ G0M)
, (2.2)

G0 is Newton’s universal gravitational constant, M is the mass
measured by an observer at infinity and ω̃ and γ are constants
coming from the non-perturbative renormalization group theory
and from an appropriate “cutoff identification”, respectively. De-
spite the preferred value for γ is γ = 9/2, it is argued [4,9] that
the qualitative properties of this solution are fairly insensitive to
the precise value of this constant. In fact, the important differ-
ences appear only near the singularity. For instance, for the value
γ = 9/2 the usual singularity in the classical Schwarzschild solu-
tion does not exist in the improved solution while if, in order to
simplify the calculations, one chooses γ = 0 there is still a scalar
curvature singularity at R = 0, even if it has a milder character
than in the classical case [10]. On the other hand, ω̃ can be found
by comparison with the standard perturbative quantization of Ein-
stein’s gravity (see [11] and references therein). It can be deduced
that its precise value is ω̃ = 167/30π , but again the properties
of the solution do not rely on its precise value as long as it is
strictly positive. A relevant fact with regard to ω̃ is that it carries
the quantum modifications. In effect, if we make explicit Planck’s
constant in (2.2), it can be considered that ω̃ = 167h̄/30π and,
thus, ω̃ = 0 would turn off the quantum corrections.

The horizons in this solution can be found by solving

1 − 2G(R)M

R
= 0.

The number of positive real solutions to this equation correspond
to the positive real solutions of a cubic equation and depends on
the sign of its discriminant or, equivalently, on whether the mass
is bigger, equal or smaller than a critical value Mcr . In general, the
critical value takes the form

Mcr = a(γ )

√
ω̃

G0
= a(γ )

√
ω̃mp ∼ √

ω̃mp, (2.3)

where mp is Planck’s mass and the function a(γ ) has, in general,
an involved expression that, for reasonable values of γ satisfies
a(γ ) ∼ 1. In particular, the preferred value γ = 9/2 provide us
with

Mcr = 1

24

√
1

2
(2819 + 85

√
1105)

√
ω̃

G0
� 2.21

√
ω̃mp � 2.94mp,

while the value γ = 0 implies

Mcr =
√

ω̃

G0
� 1.33mp.

If M > Mcr then the equation has two positive real solutions
{R−, R+} satisfying R− < R+ . The inner solution R− represents a
novelty with regard to the classical solution, while the outer so-
lution R+ can be considered as the improved Schwarzschild horizon,
i.e., the Schwarzschild horizon when the quantum modifications
are taken into account. The ‘improvement’ in this horizon can be
made apparent for masses much bigger than Planck’s mass if one
expands R+ in terms of mp/M obtaining

R+ � 2G0M

[
1 − (2 + γ )

8
ω̃

(
mp

M

)2]
.

On the other hand, if M = Mcr then there is only one positive real
solution to the cubic equation, whereas if M < Mcr the equation
has not positive real solutions.

3. Tunneling

Let us now consider Hawking radiation coming out from an im-
proved black hole satisfying M > Mcr thanks to the tunneling pro-
cess occurring through the outer horizon R+ . First, we will rewrite
the improved Schwarzschild’s solution in Painlevé-like coordinates
[12] so as to have coordinates which are not singular at the hori-
zon. In order to do this it suffices to introduce a new coordinate t
replacing the Schwarzschild-like time tS such that t = tS + h(R)

and fix h(R) by demanding the constant time slices to be flat.
In this way one gets:

ds2 = −
(

1 − 2G(R)M

R

)
dt2

+ 2

√
2G(R)M

R
dt dR + dR2 + R2 dΩ2, (3.1)

where R can now take the values 0 < R < ∞. In these coordinates
the radial null geodesics describing the evolution of test massless
particles are given by

dR

dt
= ±1 −

√
2G(R)M

R
(3.2)

with the upper (lower) sign corresponding to outgoing (ingoing,
respectively) geodesics. Since the coefficients of the metric do not
depend on t there is a killing vector ∂/∂t which is straightfor-
wardly found to be timelike for R > R+ , lightlike for R = R+
(the event horizon) and spacelike for R− < R < R+ .1 The possi-
bility of tunneling is based on the fact that the killing vector is
spacelike beneath the event horizon, what allows the existence of
negative energy states. Pair production can occur either just inside
the horizon with a positive energy particle tunneling out or just
outside the event horizon with a negative energy particle tunnel-
ing in.

In [13,2] it was found that, when a self-gravitating shell of en-
ergy E travels in a spacetime characterized by an ADM mass M ,
the geometry outside the shell is also characterized by M , but
energy conservation implies that the geometry inside the shell is
characterized by M − E . It was also found that the shell then moves
on the geodesics given by the interior line element. In this way,
according to (3.2), one expects a shell of energy E to satisfy the
evolution equation

1 For the sake of completeness, let us comment that the killing vector is also
lightlike for R = R− and timelike for R < R− .
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