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Inspired by recent studies on string theory with non-geometric fluxes, we develop a differential geometry
calculus combining usual diffeomorphisms with what we call g-diffeomorphisms. This allows us to con-
struct a manifestly bi-invariant Einstein-Hilbert type action for the graviton, the dilaton and a dynamical
(quasi-)symplectic structure. The equations of motion of this symplectic gravity theory, further general-

izations and the relation to the usual form of the string effective action are discussed. The Seiberg-Witten
limit, known for open strings to relate commutative with non-commutative theories, makes an interest-

ing appearance.
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1. Introduction

String theory is expected to be a consistent theory of quantum
gravity. In this respect, it is interesting to note that a generic fea-
ture of all known string theories is that besides the graviton, there
exist two additional massless excitations, the Kalb-Ramond field
B,y and the dilaton ¢. At leading order, the dynamics of these
fields is governed by the extension of the Einstein-Hilbert action

s=— L [awy=Ge (R L +4(a¢)2>, 1)
2K 12
which has two types of local symmetries. Namely, it is invariant
under diffeomorphisms of the space-time coordinates, and under
gauge transformation of the Kalb-Ramond field. Note also, this ac-
tion is a valid approximation for solutions with large radii.
Employing T-duality [1], methods of generalized geometry [2-4]
and double field theory [5-8], it has become clear during the last
years that also a non-geometric frame exists, where the degrees
of freedom are described by a metric on the co-tangent bundle,
by a dilaton and by a (quasi-)symplectic structure S%. The latter
gives rise to so-called non-geometric Q- and R-fluxes. In particu-
lar, the R-flux has been argued to be related to a non-associative
structure [9-13]. However, in contrast to the well-established non-
commutative behavior of open strings [14], the generalization to
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closed strings is more complex, as in a gravitational theory the
non-commutativity parameter is expected to be dynamical.

Since in the non-geometric frame, apart from the dilaton, one
deals with just a metric and a (quasi-)symplectic structure, it is
natural to expect that both local symmetries of the string action
can be given a description in terms of a (generalized) differential
geometry. Starting from so-called double field theory, this ques-
tion has already been approached in an interesting way in [15,16]
(see also [17]). However, the action derived in [15,16] is not man-
ifestly invariant under both local symmetries. It is the objective of
this Letter to construct such a manifestly bi-invariant action for the
non-geometric string. The appropriate mathematical framework for
this turns out to be the theory of Lie and Courant algebroids [18,
19], which we will mention only briefly. More details on the un-
derlying mathematical structure of Lie algebroids and the details
of the computations will appear in [20].

Here, we present the main steps of a construction of an
Einstein-Hilbert type action, which is manifestly invariant under
both usual diffeomorphisms and what we call -diffeomorphisms.
This bi-invariant action turns out to be closely related to the action
derived for non-geometric fluxes using double field theory [15,16].
Remarkably, relations familiar from the Seiberg-Witten limit for
D-branes in a two-form background also appear in this closed-
string framework.

2. B-diffeomorphisms

As mentioned in the introduction, in addition to the dilaton,
we consider the co-tangent bundle T*M of a manifold with metric
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& = 8%e, ® e, and an invertible anti-symmetric bi-vector § =
1B%eq A ey = B%eq ® e, where our notation is e, =, and e? =
dx“. Note that B can be thought of as a (quasi-)symplectic struc-
ture giving rise to a (quasi-)Poisson structure {f, g} = B“baafa,,g,
with Jacobi identity Jac(f, g, h) = @3, fd,gdch. The R-flux is de-
fined as @%¢ = 3glalmy  Blbcl where the (anti-)symmetrization of
indices contains a factor of (1/n!). Moreover, B provides a natural
(anchor) map B! :T*M — TM via Ble? = f%Me,,. As we will see,
it is essential that 8 is invertible, which is however the generic
situation. On the other hand, that means we can only describe
backgrounds for which that requirement is satisfied.

Compared to the standard differential geometry calculus, here,
not only the tangent bundle but also the co-tangent bundle plays
an important role. This suggests that the former principle of diffeo-
morphism covariance of gravity, the equivalence principle, should
be extended by a second class of diffeomorphisms. Recall, that
in the former case, infinitesimal diffeomorphisms x? — x* + £%(x)
are given by the Lie derivative §¢X = Lg¢ X, which acts as the Lie
bracket on vector fields and as the anti-commutator of the in-
sertion map and the exterior differential on forms. For the sec-
ond class, that is infinitesimal transformations parametrized by the
components of a one-form é = é‘a dx®, we note the following. The
bracket, generalizing the commutator of vector fields to forms, is
the so-called Koszul bracket defined as

€, nlk = Lyegn — teyy dE, (2)

where ¢ denotes the insertion map. In addition, let us define the
action of a one-form on a function ¢ by the anchor map:

dx*(¢) := B*(dx")(¢) = ™o =: D"¢. (3)

Now, we can proceed as in ordinary differential geometry and
define tensors by their infinitesimal transformation properties. In
particular, a scalar field ¢ is called a S-scalar if it transforms as

b;0 =L =E(¢) =EnD"9, (4)
and a one-form 7 is a S-one-form if
Sem=Lzn=1E Nk

= (é'mDmna - UmDméa + émnn Qamn)ea, (5)
with Q% = BCB‘”’. The transformation properties of general g-ten-
sors are then determined by requiring the Leibniz rule of Bg for

tensor products and contractions, which implies for instance that
a B-vector field X = X%, transforms as

b X =L:X
= (EmD™ X + X" D%y — X"E Qm")eq. (6)
To continue, we have to ﬁxAthe nature of the metric % and
the anti-symmetric bi-vector A%. The former should be a ten-
sor with respect to both diffeomorphisms and B-diffeomorphisms,
while we require the latter only to be a tensor under diffeomor-

phisms. As will become clear below, it should transform under
B-diffeomorphisms non-covariantly

Sglé = l:glé + Bamﬁbn(amén - an"gm)ea ep
= EnO™ e, @ €. (7)

Moreover, the variation with respect to £ should commute with
partial derivatives, i.e. [Sé, dq] = 0. The Lie brackets of infinitesimal
diffeomorphisms and B-diffeomorphisms are

[0+ 06,1 = 8141 .51
[651 ’ 852] = 8[§I»§ZJK + 8(151 lg, 0) (8)

Ordinary differential geometry is based on the covariantization
of the partial derivative of tensors, however, because of

8: (9a) = L (3a) + (D™ ) (daém — dméa), 9)

under a B-diffeomorphism the partial derivative of a scalar does
not transform as a B-vector. But, on the other hand, we have de-
fined the transformation of 8 in Eq. (7) such that the derivative
D% transforms precisely as a B-vector, i.e. Sg(D“qb) = £§(Da¢).
Finally, using one of the Bianchi identities derived in [19,15], we
find that the R-flux is also a S-tensor, that is Sé @b = L’g b,

3. Covariant derivative, torsion and curvature

As established in the last section, the role played by 9, in usual
gravity theories is now taken by the derivative D“. Following the
same steps as in standard differential geometry, we then define the
covariantization of D? as

@axb=DaXb_fCach’ (‘10)

and the action on forms reads V%, = D%y + fb"‘nc. Demand-
ing that the covariant derivative is a S-tensor requires that the
B-connection cancels the anomalous transformation of the first
term, leading to

Ag (ﬁcab) =D* (Dbé'c - ém Qcmb)’ (11)

with Ag = 85 - £§. Under usual diffeomorphisms, /+% needs to
transform anomalously as

Ag(Fe®) = —D(3:£"). (12)

Taking the commutator of two covariant derivatives defines the
B-torsion

[@CI’%b]qj:_'fcﬂbDC(z” (13)
which can be expressed as
-i-cab — fvcab _ fvcba _ Qcab’ (14)

with Q. = % 4 @abm g, . By construction, this is a usual ten-
sor and a B-tensor. The curvature is defined by

[@a’@b]xcz _Rmcabxm _ fmab@mxc’ (]5)
leading to
kmcab — Dafmbc _ Dbl’%mac + ﬁnbcﬁman _ ﬁnacﬁmbn

— Oy e, (16)

The metric-compatible and torsion-free Levi-Civita connection
takes the form

A ~ A A A 14

[ = % — g,,8P@ 5, M7 4 EQCab7 (17)
with

. 1. A R R

I—vcab = Egcp(Dang 4 Dbgap _ ngab). (18)

Note that one can check explicitly that (17) has the right anoma-
lous transformation behavior under diffeomorphisms (12) and
B-diffeomorphisms (11).



Download English Version:

https://daneshyari.com/en/article/8189295

Download Persian Version:

https://daneshyari.com/article/8189295

Daneshyari.com


https://daneshyari.com/en/article/8189295
https://daneshyari.com/article/8189295
https://daneshyari.com

