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Null energy condition plays a crucial role in holographic renormalization group flow, leading to the
holographic c-theorem. Unfortunately, the null energy condition is quantum mechanically violated.
Even the averaged version can be violated. We discuss how the anomalous violation of the null
energy condition affects the holographic renormalization group flow in (1 + 3)-dimensional bulk gravity.
We show that despite the violation of the null energy condition, a suitably modified holographic c-
function with a peculiar log correction is still monotonically decreasing in so far as we add the
counterterm that removes a ghost mode of gravity.
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1. Introduction

The holographic renormalization is a beautiful scheme to ge-
ometrize the renormalization group flow. In the classical Einstein
gravity approximation, the Weyl consistency condition of the lo-
cal renormalization group is automatically realized as gravitational
equations of motion. In particular, we can derive the holographic
c-theorem [1–4] that dictates there exists a c-function that mono-
tonically decreases along the renormalization group flow in any
space–time dimensions.

In order to derive the holographic c-theorem, one crucial as-
sumption is that the matter satisfies the null energy condition.
This is reasonable at least classically because the field theoretic
c-theorem, whose complete proof is available in (1 + 1) dimen-
sions [5] with recent significant progress in (1 + 3) dimensions [6],
requires the unitarity as a part of the assumption, and the null
energy condition is naturally regarded as its gravitational counter-
part.

In general relativity, any pathological space–time could be a
solution of the equation of motion without assuming the energy
condition because we can simply declare that the corresponding
Einstein tensor is sourced by the same energy–momentum ten-
sor. It is known that the null energy condition, reasonably satisfied
in realistic classical matter systems, is sufficiently strong to avoid
many “pathological” space–times such as wormhole, superluminal
propagation, time-machine, shrinking black holes and so on.

Unfortunately (or fortunately), the null energy condition is vi-
olated quantum mechanically. Actually, the violation of the null
energy condition is rather crucial for the consistency of quan-
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tum gravity in various ways. The Hawking radiation violates the
classical area non-decreasing theorem proved by the null energy
condition. The violation of the null energy condition in (1 + 1)-
dimensional worldsheet makes graviton massless in string theory.
Orientifolds as they are also break the null energy condition, but
they are crucial ingredients in string dualities (see e.g. [7] for a
study how objects with the negative tension will affect the second
law in string theory).

To relax the null energy condition while still avoiding patholog-
ical space–time, there have been various modifications proposed.
One promising direction is to average over the null geodesics.
The so-called averaged null energy condition seems to hold in
any quantum states in Minkowski space–time [8–10], but the vi-
olations were reported in curved backgrounds [11–13] (technically
we have to restrict ourselves to the achronal average because in
compact space–time the averaged null energy condition is easily
violated due to Casimir energy: in any way, even the achronal ver-
sion is violated). The violation is either induced by quantum states
or anomalous contributions in the energy–momentum tensor in-
duced by trace anomaly in curved space–time.

Do reported violations of the null energy condition invalidate
the holographic c-theorem? Unlike the favored violation we men-
tioned, we do not want the violation to kill the holographic c-
theorem because we believe that c-theorem is universally true
in dual unitary relativistic quantum field theories. Most of the
reported violations are not immediately threatening to us be-
cause the holographic renormalization group flow takes place in
a boundary Poincaré invariant setup, and we do not consider
time-dependent non-vacuum process. However, there are known
possibilities of violating null energy condition in a vacuum setup
from an anomalous contribution to the energy–momentum tensor
in curved space–time due to the trace anomaly. It is a universal
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violation in any theory and it has been used to violate even the
averaged null energy condition [11–13].

In this Letter, we would like to address the question and answer
in a positive way. With a further thought, the violation of the (av-
eraged) null energy condition are not important unless they appear
in the self-consistent background that solves the quantum modi-
fied gravity equation. Indeed, there has been no reported violation
of the averaged null energy condition in the self-consistent back-
ground [14,15,10]. We will see that a suitably modified holographic
c-function with a peculiar log correction is still monotonically de-
creasing in so far as we add the counterterm that removes a ghost
mode of gravity. This can be regarded as a consequence of the self-
consistency.

The organization of the Letter is as follows. In Section 2, we
review the holographic renormalization group and holographic c-
theorem in (1 + 3) dimensions with possible higher derivative cor-
rections. In Section 3, we discuss the anomalous contribution to
the energy–momentum tensor and possible violation of the null
energy condition to see the fate of the holographic c-theorem.
In Section 4, we summarize our findings and discuss possible fu-
ture directions.

2. Holographic renormalization group and c-theorem

As a starting point of our discussion, let us consider the holo-
graphic renormalization group flow and the holographic c-theorem
in (1 + 3)-dimensional Einstein gravity

S = 1

2

∫
d4x

√−g(R + Lmatter). (1)

Throughout the Letter, the Planck length is set to be one. In holo-
graphic renormalization group flow, we will consider the asymp-
totically AdS space–time whose metric is

ds2 = dr2 + e2A(r)ημν dxμ dxν, (2)

where ημν = (−1,+1,+1) is the three-dimensional flat Minkowski
space–time metric, and A(r) → AUVr as r → +∞ and A(r) → AIRr
as r → −∞ for the flow between two dual conformal field theo-
ries.

The holographic c-function, denoted by a(r) for a conventional
reason, is defined by

a(r) ≡ π3/2

�(3/2)(A′(r))2
, (3)

where A′(r) = dA(r)
dr . At the fixed point r → ±∞ it was interpreted

as the universal term in the entanglement entropy of the dual
conformal field theory. By using the Einstein equation, one can
compute the change of the holographic c-function along the holo-
graphic renormalization group flow as

a′(r) = − 2π3/2

�(3/2)(A′(r))3
A′′(r)

= − π3/2

�(3/2)(A′(r))3

(
T t

t − T r
r
)
� 0, (4)

where Tμν is the matter energy–momentum tensor, and the last
inequality is the claimed holographic c-theorem. To justify the in-
equality, we have assumed that the null energy condition is satis-
fied so that T r

r − T t
t � 0.

The null energy condition demands that for any null vec-
tor kμ such that kμkμ = 0, the energy–momentum tensor must
satisfy the inequality Tμνkμkν � 0. In our example, we choose
kμ = (1, e−A(r),0,0). We will discuss the “normalization” of the

null vector later when we discuss the averaged condition, but it
is irrelevant here. The null energy condition leads to −A′′(r) � 0
in the holographic renormalization group flow, and it has played a
crucial role in establishing the holographic c-theorem.

In addition to the null energy condition, there was an implicit
technical assumption A′(r) � 0 in (4). This can be derived from
the fact that A′(r → ±∞) > 0 and A′′(r) � 0 from the null energy
condition [4].

Before introducing higher derivative corrections, we have a cou-
ple of comments here. The first observation, which will be useful
later, is that the metric for the holographic renormalization (2)
is conformally flat and the Weyl tensor Wμνρσ vanishes. This is
tightly related to the fact that our holographic renormalization
group flow preserves the boundary Poincaré invariance.

The second comment is that given the recent success in prov-
ing the weak version of the c-theorem in (1 + 3)-dimensional
quantum field theories [6] (with the lack of a non-perturbative
proof of the strong version [16,17]), one may be tempted to
only require the weak version of the holographic c-theorem
(note, however, we are dealing with the (1 + 2)-dimensional
boundary, where things are less clear). This is closely related
to the averaged null energy condition. The averaged null en-
ergy condition only demands that

∫
γ Tμνkμkν dλ � 0 over any

(achronal) null geodesics γ with the affine parameter λ (such
that ∂μλkμ = 1). As mentioned in the introduction, the averaged
null energy condition is more difficult to violate than point-wise
null energy condition. In any way, in our holographic c-theorem,
we needed a slightly different averaging:

∫
γ Tμνkμkν f (λ)dλ � 0,

where λ = r and f (λ) = 1
(A′(r))3 in order to show aUV − aIR � 0.

Although we will focus on the strong c-theorem in the following,
it would be interesting to understand the physical origin of this
averaging.

The final comment is on the relation between holographic c-
theorem and the holographic equivalence of scale invariance and
conformal invariance. For the holographic equivalence to work, we
need to assume a strict version of the null energy condition that
demands that the matter must be trivial when the null energy con-
dition is identically saturated [18,19]. With this respect, we recall
that the null energy condition is not enough to exclude the patho-
logical situation where the matter has zero kinetic energy, and in
order to guarantee the unitarity, it is not sufficient. Whenever the
null energy condition is violated, the statement of the strict null
energy condition is obscure. Fortunately, due to the symmetry of
the problem, the anomalous violation we will discuss in the next
section does not play an important role there.

Now let us introduce higher derivative corrections to the holo-
graphic c-theorem argument [4]. We generalize the Einstein–
Hilbert action with various curvature squared terms:

S = 1

2

∫
d4x

√
g

(
6

L2
α + R

+ L2(λ1 Rμνρσ Rμνρσ + λ2 Rμν Rμν + λ3 R2

+ λ̃εαβγ δ Rαβρσ Rγ δ
ρσ

))
. (5)

Although for completeness we have added the parity odd Hirze-
bruch–Pontryagin term λ̃εαβγ δ Rαβρσ Rγ δ

ρσ , it is topological, and
does not affect the bulk holographic renormalization group flow.
Similarly, a particular combination of the parity even term with
(λ1, λ2, λ3) = (1,−4,1)λ gives the Euler density: (Euler = R2

μνρσ −
4R2

μν + R2), so it will not affect the bulk holographic renormaliza-
tion group flow, either. Therefore, without losing generality, we can
set λ1 = λ̃ = 0.
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