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a b s t r a c t

A micromechanics-based model is proposed for the finite strain deformation of filled elastomers based on
generalized Eshelby’s tensor and Mori–Tanaka’s method. The present formulation leads to a clear expla-
nation of the constraint effect of rubber–like matrix on the inclusions. Comparisons with experiments
and other micromechanics models are conducted. It is observed that an improvement in predictive capa-
bility for the composite with randomly dispersed particles was achieved by the present method. Based on
the latest experiment of single molecular chain, a compact network model is fatherly developed to reflect
the microstructure effect on the stress–strain relations of rubbery polymer and the resulting composites.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Rubber-like materials have been widely applied in various
industry fields due to their large-deformability. In most of applica-
tions, particles or fibers are often introduced into rubber-like mate-
rials to make composites in order to improve their mechanical
properties. To study the overall performance of hyper-elastic com-
posites, the mechanical behaviors of the composites should be pre-
dicted on the basis of their equivalent properties, which are
determined by their inherent microstructures [1]. Therefore, a
powerful homogenization method is very necessary and impend-
ing for such kind of composites. So far, large deformation behaviors
of such hyper-elastic materials have been investigated by many
approaches, which are grossly classified into micro-mechanics
method and network models. Micromechanics studies are first
briefly reviewed. Mullins and Tobin [2] systematically measured
the stress–strain relations of vulcanized rubbers containing carbon
black, and adopted a strain amplification factor to describe the en-
hanced elastic behavior of filler-reinforced rubbers. They qualita-
tively interpreted the reinforcement effect of carbon black on the
mechanical properties of rubbers. By using Mullins and Tobin’s
conclusion, Qi and Boyce [3] predicted the effective stress–strain
response of hyper-elastic composites. Frankly speaking, although
a good agreement between the predictions and experiments was
achieved, the interaction between particles and matrix was not
embodied fully. Bergstrom and Boyce [4] have investigated the
influence of filled particles on the equilibrium stress–strain

response of rubber matrix composites by means of testing and
FEM. They proposed a new concept based on first strain invariant
instead of strain amplification, and found that the new concept
could better predict the experimental results. To the best of the
authors’ knowledge, the large deformation problem of the compos-
ites was not really solved until Lopez-Pamies and Ponte Castaneda
[5,6] developed the second-order homogenization method. Their
method can be regarded as a mechanics-based analytical model
to a great extent. However, the specific application of this powerful
method cannot but to solve many partial differential equations and
code programming. In additional, such method is so complicated
and confined to solve some plane strain problems so far. Bouchart
et al. [7,8] proposed an accurate algorithm of the second-order
method to study highly compressible hyper-elastic composites.
Yin et al. [9] developed an effective hyperelastic constitutive model
for particle-filled elastomers based on Eshelby’s phase transform
idea. Although the interaction between particle and matrix is fully
considered, some deductions are arguable. For instance, they still
adopted Eshelby’s tensor of small strain in dealing with large
deformation problem. Eshelby’s tensor [10] and Mori–Tanaka
method [11] are well known as the foundation of micromechanics
of heterogeneous materials for their strong physics meaning, and
so compact that be easily acceptable. Nemat-Nasser [12,13] firstly
extended the classic Eshelby single inclusion theory to finite strain
deformation, and obtained the necessary formula of Eshelby’s ten-
sor for large deformation. Unfortunately, the validity of their theo-
retic frame is not checked by the prediction of hyper-elastic
composites yet. We do not know whether Eshelby’s equivalent
inclusion concept fit to large deformation of heterogeneous
material or not. In a whole, it is very challenging to establish the
deformation compatible conditions between particle and matrix

1359-8368/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compositesb.2012.07.011

⇑ Corresponding author. Tel./fax: +86 25 83786046.
E-mail address: ypjiang@nuaa.edu.cn (Y. Jiang).

Composites: Part B 45 (2013) 881–887

Contents lists available at SciVerse ScienceDirect

Composites: Part B

journal homepage: www.elsevier .com/locate /composi tesb

http://dx.doi.org/10.1016/j.compositesb.2012.07.011
mailto:ypjiang@nuaa.edu.cn
http://dx.doi.org/10.1016/j.compositesb.2012.07.011
http://www.sciencedirect.com/science/journal/13598368
http://www.elsevier.com/locate/compositesb


during the finite strain deformation, but which is a necessary pre-
requisite for us in understanding the effective mechanical behav-
iors of hyper-elastic composites. Many network models are
increasely adopted in an attempt to clearly know the inherent
morphology evolution. Wang et al. [14] recently measured single
polymer chain force-extension behavior by Atomic Force Micros-
copy (AFM) and confirmed the validity of the worm-like chain
(WLC) model. Miehe et al. [15] proposed a micro-sphere model
representing a continuous distribution of chain orientations in
space, and developed a new micro-mechanically based network
model for rubber-like materials. Their models excellently repli-
cated the corresponding experimental data and revealed the inher-
ent microstructure evolution. Böl and Reese [16] presented a finite
element method taking account of molecular chain deformation
and the interaction between the chains, successfully predicted
the large deformation of rubbers. Drozdov and Dorfmann [17]
emphasized the mechanical energy instead of entropy theory of
polymer chains at the finite strain deformation, and developed a
micro-mechanics model for pure polymer and the composites,
where the role of particles is equivalent to the cross-links. Brieu
and Devries [18] developed a numerical non-incremental algo-
rithm well suited for the homogenization of nonlinearly elastic
composites. Abadi [19] presented a homogenization procedure to
predict the effective shear response of heterogeneous materials
at large deformation. The homogenization procedure is imple-
mented to evaluate shear response of two specific heterogeneous
materials, elastomeric composite and reinforced viscoelastic fluid.

The main objective of this contribution is to develop microme-
chanics-based models in homogenizing the mechanical behaviors
of hyper-elastic materials containing inclusions. Main emphasis
is played on the interpretation of the synergism mechanism be-
tween rubber matrix and inclusions. The accuracy of the homoge-
nization model is checked by the comparison with the experiments
and analytic models available in literatures. Some discussions for
continuum mechanics method and network model to the hetero-
geneous systems are expanded subsequently.

2. Eshelby’s tensor and Mori–Tanaka’s formula

2.1. Constituent materials

The hyper-elastic constituent materials are assumed to be iso-
tropic. The large-deformation behaviors are characterized by the
strain energy density functions W(r) (r = P, M), which are often ex-
pressed in terms of three invariants, I1, I2 and I3, of the right Cau-
chy–Green deformation tensor C = FT � F, here the operation h�i
denotes dot product between second-order tensors. F = @x/@X is
the deformation gradient tensor, where x is the current position
and X the location at the reference configuration for a arbitrary
material point, and its transpose matrix denoted by FT.

For the matrix phase, Yeoh’s constitutive formula is adopted
[20], and given by

W ðMÞðFÞ ¼ A10ðI1 � 3Þ þ A20ðI1 � 3Þ2 þ A30ðI1 � 3Þ3 ð1Þ

where A10, A20 and A30 are constants determined by fitting with the
experimental data.

For the particle phase, the following Neo-Hookean hyper-elastic
model is used,

W ðPÞðFÞ ¼ B10ðI1 � 3Þ þ ðJ � 1Þ2=B20 ð2Þ

where J ¼ detðFÞ ¼
ffiffiffiffi
I3
p

;B10 and B20 are material constants. Rigid
particles are modeled by setting a high value of B10 and a small va-
lue of B20 while the void is obtained with B10=0 and B20 ?1. In the
limit case of small strains, Eq. (2) can characterize the linear and

isotropic materials with initial bulk modulus KP = 2/B20 and initial
shear modulus lP = 2B10.

2.2. Eshelby’s tensor for finite strain

Let a ellipsoidal region X in a material space V undergo a phase
transformation, if X were free from the constraint imposed by the
surrounding material, it would attain a constant transformation
deformation gradient F⁄. The resulting deformation gradient F of
X in the presence of the constraint from the surrounding matrix
is spatially uniform when V is homogeneous and unbounded [10].
Therefore, F is related to the transformation deformation gradient
F⁄ by

F ¼ L : F� ð3Þ

here, the above notation h:i is double contraction between fourth-
order and second-order tensors. L is called the generalized Eshel-
by’s tensor, and cannot be solved analytically for the finite strain
problem. For an ellipsoidal X whose principal axes are parallel to
the global coordinate axes xi with length 2ai, (i = 1 � 3), in the ma-
trix with stiffness Cijkl, the Eshelby’s tensor is determined by,

LiAjB ¼
1

4paAaB

Z
SðfÞ

NijðfÞ
DðfÞ fAfBdSðfÞ ðA;B not summedÞ ð4:aÞ

NijðfÞ ¼
1
2

eikmeikmKklðfÞKmnðfÞ ð4:bÞ

DðfÞ ¼ det jKijðfÞj ð4:cÞ

KijðfÞ ¼ C�AiBjfAfB ðA; B summedÞ ð4:dÞ

C�AiBj ¼
1

aAaB
CAiBj ðA; B not summedÞ ð4:eÞ

where dS(f) is an elementary surface of a unit sphere, S(f), in the f-
space. In the following section, the particle shape is supposed to be
ellipsoidal with a3 > a1 = a2, and aspect ratio defined as a = a3/a1.

2.3. Mori–Tanaka’s formula

A two-phase composite system consists of a matrix and partic-
ulate phase. Perfect bonding is assumed between the constituents.
The particle phase consists of ellipsoidal particles that are of the
same shape but can be of different size; they can be aligned or have
a random orientation in space.

Suppose a representative volume element (RVE) subjected to
linear boundary displacements as follows:

x ¼ F0 � X ð5Þ

where F0 is uniform deformation gradient along the outer bound-
ary. Following Benveniste’s formula of Mori–Tanaka mean field con-
cept [21],

FM ¼ F0 þ eF; FP ¼ F0 þ eF þ Fpt ð6Þ
where eF is the average perturbed deformation gradient in the ma-
trix due to the presence of the inclusions, and Fpt is the perturbed
part of the same quantity in a typical inclusion with respect to
the matrix. Subsequently, the corresponding expression of Mori–Ta-
naka method is written as

CP : ðF0 þ eF þ FptÞ ¼ CM : ðF0 þ eF þ Fpt � F�Þ ð7Þ

2.4. Incremental theory formulation

Based on Eshelby’s equivalence principle, together with Mori–
Tanaka’s mean field concept, the incremental first P–K stress in
the particle dSP is given by
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