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We present an antenna shower formalism including contributions from initial-state partons and
corresponding backwards evolution. We give a set of phase-space maps and antenna functions for
massless partons which define a complete shower formalism suitable for computing observables with
hadronic initial states. We focus on the initial-state components: initial–initial and initial–final antenna
configurations. The formalism includes comprehensive possibilities for uncertainty estimates. We report
on some preliminary results obtained with an implementation in the Vincia antenna-shower framework.
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1. Introduction

Parton-shower algorithms offer a universal and fully exclusive
perturbative resummation framework for high-energy processes. In
the context of Monte Carlo event generators [1], they also provide
the perturbative input for hadronization models. As such, they are
complementary to more inclusive techniques, such as fixed-order
calculations (limited to small numbers of hard and well-separated
partons) and more inclusive resummation approaches (limited to a
fixed set of observables).

Sjöstrand derived the first consistent parton-shower algo-
rithm [2] for so-called “backwards evolution” of initial-state par-
tons a quarter-century ago. The central point is that an initial-state
parton defined at a high factorization scale, Q F , can be evolved
“backwards”, towards earlier times, to find the parton from which
it originated at some low scale, Q 0 ∼ 1 GeV. During this evolu-
tion, which is governed by the Altarelli–Parisi (AP) splitting ker-
nels [3] supplemented by parton-distribution function (PDF) ratios
(a point which is crucial to the backwards-evolution formalism),
initial-state radiation is emitted, which in turn gives rise to its
own final-state radiation, and the character of the evolving par-
ton changes, migrating towards successively higher x values and
towards the more valence-dominated flavor content at low Q .

As an alternative to Altarelli–Parisi evolution, Gustafson and
Pettersson proposed a final-state algorithm based on QCD di-
poles [4], which has been implemented in Ariadne [5]. There,
however, initial-state radiation does not rely on backwards evo-
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lution. Instead, it is treated essentially as final-state radiation off
dipoles stretched between the hard process and the beam rem-
nants, and thus depends on the non-perturbative makeup of the
remnants. Winter and Krauss took a first step towards combin-
ing the dipole formalism with backwards evolution (and thus also
eliminating the dependence on the remnants) in Ref. [6]. Our con-
struction differs in the antenna functions, evolution variables, and
recoil strategy. In particular, it differs in the treatment of collinear
singularities in initial–final antennæ. We have checked that our an-
tennæ properly reproduce all QCD singularities.

Our approach merges the Lund dipole language with that of
fixed-order antenna factorization [7–10], and is complementary to
Ariadne. It is embodied in the Vincia [11–13] parton shower, im-
plemented as a plug-in to Pythia 8. (Note: we henceforth use
the term “antenna” rather than “dipole” to avoid ambiguities of
historical origins, see e.g., Ref. [14].) So far, however, the Vincia for-
malism has been applied only to final-state showers. In this Letter,
we present all the ingredients necessary to construct a consistent
initial-state shower based on QCD antennæ. A further important
ingredient is comprehensive possibilities for uncertainty estimates,
in line with the framework for automated theory uncertainties
proposed in Ref. [15].

2. Antennæ and antenna showers

Throughout this Letter, we use the following notation conven-
tion: capital letters for pre-branching (parent) partons and lower-
case letters for post-branching (daughter) ones. Also, we use a, b,
for incoming partons and letters starting from h, i, j, . . . for outgo-
ing ones. Fig. 1 illustrates these choices for the two basic types
of configurations we consider. We will also indicate incoming
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Fig. 1. Illustration of initial–initial and initial–final branchings: AB → ajb and AK →
ajk, respectively. For the II case, the recoil of the hard system is illustrated by the
change in orientation of the three outgoing lines representing the original final-state
system.

particles with a preceding minus sign in the arguments to antenna
functions. We adopt the convention that particle energies are al-
ways positive, whether the particle is in the initial or the final
state. As a result, si j = (ki + k j)

2 is always positive.
The key building block for parton showers is the Sudakov fac-

tor, which represents the non-emission probability between two
values of the evolution scale, see [1,16] for reviews. In the context
of an antenna shower, the Sudakov factor for the branching of one
antenna is
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In this equation, dΦant represents the antenna phase-space factor-
ization, which provides an exact Lorentz-invariant mapping from
2 to 3 on-shell partons, that conserves global energy and momen-
tum. Specific forms appropriate to initial–final and initial–initial
antenna configurations are defined in Sections 3 and 4, respec-
tively.

The evolution variable Q 2 is a function of the phase-space
point and must vanish in the unresolved limits [17]. The general
formalism permits us to study different evolution variables [11,15],
though in this Letter we will restrict ourselves to a transverse-
momentum type variable, defined in Section 5. As in all parton
showers, the description is expected to be accurate only in the
strongly-ordered limit for the Q 2 of successive emissions.

The dressed or colored antenna function ac is defined as1

ac = 4παS
(

Q 2)Cā, (3)

where C is a color factor (we recall that we use normalization con-
ventions such that gluon and quark emission antennæ have C = C A

and C = 2C F , respectively, and gluon-splitting ones have C = 1),
and ā is a color-ordered antenna function, which embodies the fac-
torization of QCD matrix elements in all single-unresolved soft and
collinear limits. We don’t take the functions ā to be fixed; instead
we use different antenna functions with the same singular limits
as one estimate of the shower uncertainty.

We use so-called global antenna functions [4] (called sub-
antenna functions with uniquely identified radiators in Ref. [9])
which are active over all of phase space. A backwards-evolution

1 Note that in [15] the normalization was ac = αS /(4π)Cā.

shower based on sector antennæ in analogy to Refs. [18,13] is left
for future work. Some, but not all, antennæ needed for initial-state
radiation can be chosen to be the crossings of their final–final
counterparts. An incoming particle is necessarily a hard radiator
in an antenna. Therefore, a gluon emission antenna function with
an incoming gluon has to reproduce the AP splitting function on
its own, e.g.

ā(−ag, jg,kx)
p j→zpa−→ 1

saj

1

1 − z
P gg→G(1 − z) (4)

whereas if both gluons are in the final state, the collinear singular-
ity is reproduced by the sum of two antenna functions

ā(hx, i g, jg) + ā(i g, jg,kx)
p j→zpi+ j−→ 1

si j
P gg→G(z) (5)

where the first antenna function is singular for i becoming soft,
the second for j becoming soft.

In pure final-state showers, the x values of the incoming par-
tons are not modified by the phase-space factorization, hence the
PDF ratios in Eq. (2) drop out, yielding the ordinary form of the
final–final Sudakov form factor [11,15].

For initial–final antennæ, only one of the PDF x values changes,
and a Sudakov factor very similar to that of conventional AP show-
ers results, with a single PDF ratio in the kernel, fa(xa, Q 2)/

f A(xA, Q 2). Unlike conventional showers, however, we must also
consider the backwards evolution of two initial-state partons si-
multaneously, generally requiring two separate parton-density fac-
tors in initial–initial antennæ.

The consideration of initial–initial and initial–final antennæ
gives rise to one more subtlety. The basic antenna functions are
color-ordered, so that in a final–final gluon-emission antenna, for
example, the emitted gluon is color adjacent to both other (hard)
daughter partons. That is, it is the middle parton of the color
trio which is emitted. The leading-color approximation inherent
in parton showers along with the symmetry of final-state phase
space allows us only antennæ with this ordering. When consid-
ering initial-state antennæ, however, the emitted parton need not
be color-adjacent to both other daughter partons; the middle par-
ton, adjacent to both, may end up in the initial instead of the final
state. We will call antennæ in which the middle parton is emitted
into the final state, ‘emission’ antennæ; and those in which the
middle parton ends up in the initial state, ‘conversion’ antennæ.

For those antennæ in which the type (spin) of the initial-
state partons does not change after branching, we can redistribute
collinear singularities to neighboring antennæ so as to replace
‘conversion’ antennæ by ‘emission’ antennæ. For those antennæ in
which the type of the initial-state partons changes during branch-
ing — in which a quark backwards-evolves into a gluon or vice
versa — we cannot avoid a consideration of both types of antenna
function and non-emission probability.

3. Initial–final configurations

The pre- and post-branching partons for initial–final configura-
tions are labeled by AK → ajk, with the other incoming parton, B ,
acting as a passive spectator, see the illustration in Fig. 1.

In general, the incoming momentum after branching will no
longer be parallel to the beam direction. We could boost it back
to the beam direction; this will transfer some of the transverse
momentum generated in the emission to the rest of the event.
This is the antenna analog of the recoil considered in Ref. [19].
In the present Letter, we will instead restrict the branching so that
the incoming momentum remains parallel to the beam axis after
branching.
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