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Keywords:
Qubits
Oriented matroid theory
(4 + 4)-dimensions

We establish a connection between 4-rebits (real qubits) and the Nambu–Goto action with target
‘spacetime’ of four time and four space dimensions ((4 + 4)-dimensions). We motivate the subject with
three observations. The first one is that a 4-rebit contains exactly the same number of degree of freedom
as a complex 3-qubit and therefore 4-rebits are special in the sense of division algebras. Secondly, the
(4 + 4)-dimensions can be splitted as (4 + 4) = (3 + 1) + (1 + 3) and therefore they are connected with
an ordinary (1 + 3)-spacetime and with changed signature (3 + 1)-spacetime. Finally, we show how
geometric aspects of 4-rebits can be related to the chirotope concept of oriented matroid theory.

© 2012 Elsevier B.V. All rights reserved.

Recently, through the identification of the coordinates xμ of a
bosonic string, in target space of (2 + 2)-signature, with a 2 × 2
matrix xab , Duff [1] was able to discover new hidden discrete sym-
metries of the Nambu–Goto action [2,3]. It turns out that the key
mathematical tool in this development is the Cayley hyperdeter-
minant Det(b) [4] of the hypermatrix ba

bc = ∂axbc . A striking re-
sult is that Det(b) can also be associated with the four electric
charges and four magnetic charges of a STU black hole in four-
dimensional string theory [5]. Even more surprising is the fact that
Det(b) makes also its appearance in quantum information the-
ory by identifying ba

bc with a complex 3-qubit system aa
bc [6].

These coincidences, among others, have increased the interest on
the qubit/black hole correspondence [7].

It has been shown [8] that a straightforward generalization
of the above Duff’s formalism, concerning the Nambu–Goto ac-
tion, can be applied to a target space of (5 + 5)-signature, but
not to a space of (4 + 4)-signature. But, since in principle, the
(5+5)-signature may be associated with a 5-qubit and the (4+4)-
signature with a 4-qubit this is equivalent to say that the Nambu–
Goto action exhibit discrete symmetries for a 5-qubit system, but
not for a 4-qubit system.

On the other hand, in quantum information theory it does
not seem to be any particular reason for avoiding unnormalized
4-qubits. In fact, a 4-qubit is just one possibility out of the com-
plete set of N-qubit systems. It turns out that, in a particular
subclass of N-qubit entanglement, the Hilbert space can be bro-
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ken into the form C2N = C L ⊗ Cl , with L = 2N−1 and l = 2. Such a
partition it allows a geometric interpretation in terms of the com-
plex Grassmannian variety Gr(L, l) of 2-planes in C L via the Plücker
embedding. In this case, the Plücker coordinates of Grassmannians
Gr(L, l) are natural invariants of the theory. It turns out that in this
scenario the complex 3-qubit, 4-qubit and 5-qubit admit a geomet-
ric interpretation in terms of the complex Grassmannians Gr(4,2),
Gr(8,2) and Gr(16,2), respectively (see Refs. [9] and [10] for de-
tails).

Of course, in this context, it has been mentioned in Ref. [11],
and proved in Refs. [12] and [13], that for normalized qubits the
complex 1-qubit, 2-qubit and 3-qubit are deeply related to divi-

sion algebras via the Hopf maps, S3 S1→ S2, S7 S3→ S4 and S15 S7→ S8,
respectively. It seems that there does not exist a Hopf map for
higher N-qubit states. So, from the perspective of Hopf maps,
and therefore of division algebras, one arrives to the conclusion
that 1-qubit, 2-qubit and 3-qubit are more special than higher-
dimensional qubits (see Refs. [11–13] for details).

How can we make sense out of these different scenarios in
connection with a 4-qubit system? Before we try to answer this
question, let us think in a 3-qubit/black hole correspondence. In
this case the symmetry of a extremal STU black hole model is
SL(2, R)⊗3. However in the case of a complex qubit system the
symmetry group is SL(2, C)⊗3. So, the problem is equivalent to an
embedding of a real 3-qubit (3-rebit, see Ref. [14] for definition
of N-rebits) relevant in STU black holes into complex 3-qubit in
complex geometry. It has been shown [9] that this kind of em-
bedding is not trivial and in fact requires the mathematical tools
of fiber bundles with Grassmannian variety as a base space. It has
been compared [10] this mechanism with the analogue situation
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described in twistor theory when one pass from real to complex
Minkowski space (see also Refs. [15–17]).

Apart from these embeddings one may gain some insight on
the above subject if one simple counts the number of degrees of
freedom corresponding to the complex 3-qubit and 4-qubit and
compare them with the corresponding real qubits, 3-rebit, 4-rebit.
Consider the general complex state |ψ〉 ∈ C2N

,

|ψ〉 =
1∑

a1,a2,...,aN =0

aa1a2...aN |a1a2 · · ·aN〉, (1)

where the states |a1a2 · · ·aN 〉 = |a1〉 ⊗ |a2〉 · · · ⊗ |aN 〉 correspond to
a standard basis of the N-qubit. For a 3-qubit (1) becomes

|ψ〉 =
1∑

a1,a2,a3=0

aa1a2a3 |a1a2a3〉, (2)

while for 4-qubit one has

|ψ〉 =
1∑

a1,a2,a3,a4=0

aa1a2a3a4 |a1a2a3a4〉. (3)

One observes that aa1a2a3 has 8 complex degrees of freedom, that
is 16 real degrees of freedom, while aa1a2a3a4 contains 16 com-
plex degrees of freedom, that is 32 real degrees of freedom. Let
us denote N-rebit system (real N-qubit) by ba1a2...aN . So we shall
denote the corresponding 3-rebit, 4-rebit by ba1a2a3 and ba1a2a3a4 ,
respectively. One observes that ba1a2a3 has 8 real degrees of free-
dom, while ba1a2a3a4 has 16 real degrees of freedom. Thus, by this
simple (degree of freedom) counting one note that it seems more
natural to associate the 4-rebit ba1a2a3a4 with the complex 3-qubit,
aa1a2a3 , than with the complex 4-qubit, aa1a2a3a4 . Of course, by im-
posing some constraints one can always reduce the 32 real degrees
of freedom of aa1a2a3a4 to 16, and this is the kind of embedding
discussed in Ref. [9]. Here, we shall focus in the first possibility,
that is we associate the 4-rebit ba1a2a3a4 with the 3-qubit aa1a2a3 .
The whole idea is to make sense out of a 4-rebit in the Nambu–
Goto context without loosing the important connection with a di-

vision algebra via the Hopf map S15 S7→ S8. Since from the point of
view of division algebra the 3-qubit is special one may argue that
4-rebit is also special and therefore the (4+4)-signature must also
be special. Motivated by this observation one may now proceed to
recall why a straightforward application of Duff’s prescription can-
not be applied to the 4-rebit. The main purpose of this Letter is to
propose a solution for a connection between 4-rebit and Nambu–
Goto action.

Before we proceed further let us add other sources of moti-
vation concerning the (4 + 4)-signature. First, we all agree that
at macroscopic scales a general description of our world requires
(1 + 3)-dimensions (a manifold of one time dimension and three
space dimensions). But even for no experts it is evident the lack
of symmetry between the number of time and space dimensions
of our world. A natural question is: Why nature did not choose
instead of (1 + 3)-dimensions other more symmetric combina-
tions, such as (1 + 1), (2 + 2) or (4 + 4)-dimensions? Of course,
one may expect that any complete unified theory must explain
no only the number of dimensions of the spacetime but also its
signature [18]. In the lack of such a unified theory it turns out
convenient to explore separate signatures and dimensions. In this
context it has been shown that the cases (1 + 1) and (2 + 2)

may be considered as exceptional signatures [19]. We shall prove
that in the context of the Nambu–Goto action the target space
of (4 + 4)-dimensions can be understood as two copies of the
(2 + 2)-dimensions. Roughly speaking, one may note that this is

true because (4 + 4) = ((2 + 2) + (2 + 2)). Another similar moti-
vation can be found if one considers the combination (4 + 4) =
((3 + 1) + (1 + 3)). In other words the (4 + 4)-dimensions can be
splitted in the usual (1 + 3)-dimensions and in (3 + 1)-dimensions.
It turns out that the case (3 + 1)-dimensions can be considered
simply as a change of signature of (1 + 3)-dimensions [20]. So,
(4 + 4)-dimensions must contains the usual (1 + 3)-dimensions
of our world and a mirror (3 + 1)-dimensions with the signature
changed.

Let us start by showing first that straightforward application
of the Duff’s formalism concerning the Nambu–Goto action/qubits
correspondence works for (2 + 2)-signature, but no for the (4 + 4)-
signature. For the case of (2 + 2)-signature, consider the identifica-
tion,

x11 ↔ x1 + x3, x12 ↔ x2 + x4,

x21 ↔ x2 − x4, x22 ↔ −x1 + x3. (4)

Of course, this is equivalent to consider the matrix

xab =
(

x1 + x3 x2 + x4

x2 − x4 −x1 + x3

)
. (5)

It is not difficult to prove that

ds2 = dxμdxνημν, (6)

can also be written as

ds2 = 1

2
dxabdxcdεacεbd, (7)

where

ημν = diag(−1,−1,1,1), (8)

is a flat metric corresponding to (2 + 2)-signature and εab is the
completely antisymmetric symbol (ε-symbol) with ε12 = 1. Note
that (7) is invariant under SL(2, R)⊗2 transformations.

We shall now show that a generalization of (6) and (7) to a
target space of (4 + 4)-signature leads to a line element identically
equal to zero. In this case the corresponding expressions similar
to (4) are

x111 ↔ x1 + x5, x121 ↔ x2 + x6,

x211 ↔ x2 − x6, x221 ↔ −x1 + x5,

x112 ↔ x3 + x7, x122 ↔ x4 + x8,

x212 ↔ x4 − x8, x222 ↔ −x3 + x7. (9)

This is equivalent to consider two matrices

xab1 =
(

x1 + x5 x2 + x6

x2 − x6 −x1 + x5

)
, (10)

and

xab2 =
(

x3 + x7 x4 + x8

x4 − x8 −x3 + x7

)
. (11)

At first sight one may consider the line element

ds2 = 1

2
dxabc dxdef εadεbeεcf (12)

as the analogue of (7). But this vanishes identically because scf ≡
dxabcdxdef εadεbe is a symmetric quantity, while εcf is antisymmet-
ric.

Similarly, it is not difficult to show [1] (see also Ref. [8]) that
the world sheet metric in (2 + 2)-dimensions
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