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An intrinsic mass generation mechanism for exotic ELKO dark matter fields is scrutinized, in the context
of the very special relativity (VSR). Our results are reported on unraveling inequivalent spin structures
that educe an additional term on the associated Dirac operator. Contrary to the spinor fields of mass
dimension 3/2, this term is precluded to be absorbed as a shift of some gauge vector potential, regarding
the equations for the dark spinor fields. It leads to some dynamical constraints that can be intrinsically
converted into a dark spinor mass generation mechanism, with the encoded symmetries maintained by
the VSR. The dynamical mass is embedded in the VSR framework through a natural coupling to the kink
solution of a λφ4 theory for a scalar field φ. Our results evince the possibility of novel effective scenarios,
derived from exotic couplings among dark spinor fields and scalar field topological solutions.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The investigation on the nature of dark matter components,
as well as the comprehension regarding all their intrinsic rela-
tions with the elements of the cosmic inventory, belongs to one of
challenging current problems in theoretical physics [1–4]. A novel
form of matter called ELKO, the acronym of Eigenspinoren des
Ladungskonjugationsoperators, which designates the eigenspinors of
the charge conjugation operator, seems to fulfill the requirements
for a dark matter component, in the scope of the interplay among
general relativity, astrophysics and particle physics [5–9,12–18].
These references for instance evince that ELKO spinor fields main
interaction via the gravitational field makes them naturally dark,
which enforces dark spinor fields investigation in a cosmologi-
cal setting, where interesting solutions and also models where
the spinor is coupled conformally to gravity are provided. Once
embedded in the quantum field theory, besides leading to some
non-local properties [19–22], the standard formulation of ELKO
predicts modified dispersion relations. Furthermore, it allows for
accomplishing dual-helicity mass dimension one eigenspinors of
the spin-1/2 charge conjugation operator. The possibility of exotic
interactions with the Higgs scalar field, and suppressed interac-
tions with gauge fields, accredits such matter fields as potential
candidates to describe dark matter [19–22]. At standard model
(SM) energy scales, ELKO should behave as a representation of the
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Lorentz group through the setup of a preferred direction related
to its wave equation [19–25]. It is recovered by the conjecture of
the very special relativity (VSR) [26,27]. The Lorentz symmetries
underlying the SM matter and gauge fields, as well as the alge-
braic structure underlying VSR [25] supported by the event space
underlying dark matter and dark gauge fields, have been continu-
ously evaluated, in order to describe the embedding of dark spinor
fields into the SM [28,29].

The VSR operates at the Planck scale to reproduce the SM as
an associated effective theory. It is supposed to be operative not
solely at ultra-high energies, but also beyond SM energy scales,
where dark matter interactions may eventually take place. In the
context of elementary interactions between fermionic and gauge
fields, as well as to preserve the intrinsic darkness with respect to
the SM gauge fields [25], it is possible to construct a VSR invari-
ant fermionic field with unitary mass dimension and spin-1/2: the
ELKO.

To shed some primordial light on ELKO dark matter field prop-
erties, one may reckon that in spacetimes with non-trivial topology
there ought to be an additional degree of freedom for fermionic
particles [5,30–34]. Such novel element emerges when, for in-
stance, SM spinor fields are parallelly transported: a complemen-
tary one-form field ξ−1(x)dξ(x) is accrued on the Dirac opera-
tor, educed by the non-trivial topology [5,30–34]. Here d denotes
the exterior derivative operator and ξ is a scalar field. When SM
Dirac spinor fields are taken into account, the vector gauge field
V term is affected by the transformation V �→ V + 1

2π i ξ
−1 dξ ,

which indeed corresponds to the addition of an gauge potential
extra term. Such an exotic term may be therefore absorbed by
an external abelian gauge potential, representing an element of
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the cohomology group H1(M,Z2) [31–35], in the context of the
(exotic) Dirac equation. Notwithstanding, concerning exotic ELKO
dark spinor fields the possibility of such an intrinsic coupling to
SM gauge fields is null. Since gauge fields interactions with ELKO
are suppressed [19–22], ELKO fields are able to probe purely the
spacetime topology [5]. It consistently reinforces the above men-
tioned darkness of such fields. This Letter is organized as follows:
in the next section, the exotic structure underlying ELKO dark
spinor fields [5] is briefly revisited. In Section 3 we identify some
similarities between the exotic Dirac operator and the covariant
derivative embedded into the framework of the VSR, so that the
Klein–Gordon equation for a massive particle can be reproduced.
By identifying the VSR preferential direction with a dynamical de-
pendence on the kink solution of a λφ4 theory for a scalar field φ,
we show that an effective mass for the ELKO spinor can be nat-
urally obtained. It evinces the possibility of novel scenarios for
the mechanism of dynamical mass generation, as well as for ex-
otic couplings with scalar field topological solutions. In Section 4
we conclude and provide novel perspectives on the potentially rel-
evant and prominent results addressed in this Letter.

2. Exotic ELKO dark spinor fields

ELKO spinor fields λ(p) are defined as eigenspinors of the
charge conjugation operator C = (

O iΘ
−iΘ O

)
K , in the precise sense

that Cλ(p) = ±λ(p), where, given the rotation generators J , the
Wigner’s spin-1/2 time reversal operator Θ satisfies ΘJΘ−1 =
−J ∗ . The operator K is responsible to C-conjugate spinor fields
appearing on the right. The plus [minus] sign stands for self-
conjugate [anti-self-conjugate] spinor fields λS (p) [λA(p)]. The
complete form of ELKO can be explicitly obtained [19–22] through
the solution of the equation of helicity (σ · p̂)λ

A/S
± (p) = ±λ

A/S
± (p),

where p̂ = p/‖p‖. The four boosted spinor fields are1

λ
S/A
{∓,±}(p) =

√
E + m

2m

(
1 ∓ p

E + m

)
λ

S/A
{∓,±}(0),

where λ
S/A
{∓,±}(0) =

(±iΘ[φ±(0)]∗
φ±(0)

)
.

The (Weyl) spinors fields Θ[φ±(0)]∗ and φ±(0) have opposite he-
licities.

Prior results moreover evince that ELKO can be expressed
through a linear combination of Dirac particle and antiparticle
fields [5,15–22], and the prescription pμ �→ i∇μ holds for ELKO:
λS/A(x) = λS/A(p)exp(εS/Aipμxμ), where εS = −1 and εA = +1
[19].

Besides the standard ELKO spinor fields λ(x), one can get a
second type of ELKO, denoted hereupon by λ̊(x), associated to an
inequivalent spin structure, that reflects a modification of the co-
variant derivative [31–34]:

∇̊X λ̊(x) = ∇X λ̊(x) − 1

2

[
X · (ξ−1(x)dξ(x)

)]
λ̊(x), (1)

where X denotes a vector field. The so-called exotic term in Eq. (1)
is assumed to be re-scaled as 1

2π i (ξ
−1(x)dξ(x)), an integer of a

Čech cohomology class [5,31–34]. The exotic Dirac operator can be
written thereupon as

iγ μ∇̊μ = iγ μ∇μ + 1

2
ξ−1(x)dξ(x), (2)

1 The boosts presented here are Lorentz boosts, although SIM(2) VSR boosted
ELKO can be derived as in [25]. For our aim in what follows Lorentz boosts suf-
fice, and therefore shall be adopted.

and the exotic Dirac equation then becomes

(
iγ μ∇μ + (

ξ−1(x)dξ(x)
)
/2 ± mI

)
ψ(x) = 0,

where ψ denotes a Dirac spinor field. As sustained in [30–34],
one can express ξ(x) = exp(2iθ(x)) ∈ U(1), so that the exotic term
yields ξ−1(x)dξ(x) = 2iγ μ∂μθ(x). One hence obtains the explicit
form for the coupled system of equations for the exotic ELKO as

((
iγ μ∇μ + iγ μ∂μθ

)
δ
β
α ± mIε

β
α

)
λ̊

S/A
β (x) = 0,

ε
{−,+}
{+,−} := −1 (3)

or, more explicitly — taking into account Eq. (2):

⎛
⎜⎜⎝

iγ μ∇̊μ O O O

O iγ μ∇̊μ O O

O O iγ μ∇̊μ O

O O O iγ μ∇̊μ

⎞
⎟⎟⎠

⎛
⎜⎜⎝

λ̊S{−,+}
λ̊S{+,−}
λ̊A{−,+}
λ̊A{+,−}

⎞
⎟⎟⎠

− imI

⎛
⎜⎜⎝

− λ̊S{+,−}
λ̊S{−,+}
λ̊A{+,−}

− λ̊A{−,+}

⎞
⎟⎟⎠ = 0.

The exotic operator iγ μ∇μ + iγ μ∂μθ ± mI annihilates each of the

four exotic Dirac spinor fields used to construct λ̊
S/A
β (x), as pre-

scribed by the standard Dirac dynamics. However, since the op-
erator in (3) couples the {±,∓} degrees of freedom [5,19], the
modified exotic Dirac operator does not annihilate ELKO fields.
By observing the off-diagonal nature of the mass term in Eq. (3)
one should notice the differences from a phenomenological off-
diagonal Majorana mass term introduced in the context of the
Dirac equation [5,19].

Since the prerogatives for the ELKO dynamics are established
[5,19], we drive our attention to the procedure for obtaining the
corresponding effective dispersion relation derived from the exotic
Dirac operator. By analogy with the relativistic quantum mechan-
ics terminology, we shall discuss whether the exotic Dirac operator
can be considered as a square root of the Klein–Gordon opera-
tor — in the sense that (iγ μ∇μ+ iγ μ∂μθ −mI)(iγ μ∇μ+ iγ μ∂μθ +
mI) = (gμν∇μ∇ν + m2)I. This feature must remain true for the
5LKO and its exotic partner:

((
iγ μ∇μ + iγ μ∂μθ

)
δ
β
α ± mIε

β
α

)((
iγ μ∇μ + iγ μ∂μθ

)
δ
β
α ∓ mIε

β
α

)
= (

gμν∇μ∇ν + m2)
Iδ

β
α, (4)

since the introduction of an exotic spin structure does not modify
the Klein–Gordon propagator fulfillment by dark spinor fields. The
corresponding Klein–Gordon equation for the exotic ELKO field is
hence provided by

(� + m2 + gμν∇μ∇νθ + ∂μθ∇μ + ∂μθ∂μθ
)
λ̊(x)S/A

{±,∓} = 0.

This equation can reproduce the same Klein–Gordon propagator for
standard and exotic ELKO as well. For the exotic case, it demands
the constraint

(�θ + ∂μθ∇μ + ∂μθ∂μθ
)
λ̊

S/A
{±,∓}(x) = 0 (5)

which can be formulated without restricting the theory to any par-
ticular condition as those assumed in [5].
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