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We present exact bounce solutions and amplitudes for tunneling in (i) a piecewise linear–quartic
potential and (ii) a piecewise quartic–quartic potential, ignoring the effects of gravitation. We cross check
their correctness by comparing with results obtained through the thin-wall approximation and with a
piecewise linear–linear potential. We briefly comment on applications in cosmology.
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1. Introduction

In recent times, first order phase transitions have gained sig-
nificant interest, for example as sources of gravitational waves [1]
and in transversing the string theory landscape [2,3]. In the lat-
ter picture, the scalar field potential possesses a plethora of local
minima. A field that is initially trapped in a higher energy vac-
uum jumps to a lower energy vacuum via a quantum tunneling
process.

The underlying microphysics of tunneling can be described by
instantons, i.e. classical solutions of the Euclidean equations of mo-
tion of the system [4,5]. Tunneling proceeds via the nucleation
of bubbles of true (or rather lower energy) vacuum surrounded
by the sea of false vacuum. If the curvature of the potential is
large compared to the corresponding Hubble scale, this process
can be described by Coleman instantons, i.e. bounce solutions to
the Euclidean equations of motion [4,5]. For relatively flat poten-
tials, tunneling proceeds via Hawking–Moss instantons [6].

Ignoring the effects of gravity, Coleman presented a straight-
forward prescription for computing vacuum transitions [4]. The
tunneling amplitude for a transition from the false (or higher en-
ergy) vacuum at φ+ to the true (or lower energy) vacuum at φ−
is given by A exp(−B). The coefficient A is typically ignored but
in principle calculable, see [7]. The exponent B = S E (φB) − S E(φ+)

(sometimes also referred to as the bounce action) is the difference
between the Euclidean action S(φ) = 2π2

∫ ∞
0 dr r2( 1

2 φ′2 + V (φ))

for the spherically symmetric bounce solution φB and for the
false vacuum φ+ . The bounce obeys the one-dimensional Euclidean
equation of motion

φ′′
B + 3

r
φ′

B − ∂φ V (φB) = 0, (1)
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where φ′ ≡ ∂rφ and r = √
t2 − �x2 is the radial coordinate of the

spherical bubble. This configuration describes the bubble at the
time of nucleation. In this Letter, we ignore its subsequent evo-
lution, and focus on the computation of B .

In general, the Coleman bounce solutions can be computed ex-
actly only for very few potentials. However, if the potential dif-
ference between the two vacua is small compared to the typical
potential scale, the tunneling amplitude can be computed using
the thin-wall approximation. Otherwise, one needs to resort to ei-
ther numerical computations (see [8] for an approach for a generic
quartic potential) or approximate the potential by potentials for
which the exact instanton solutions are known. To the best of our
knowledge, only for very few potentials has the Coleman tunneling
process been solved analytically: a piecewise linear–linear poten-
tial [9] and piecewise linear–quadratic potentials [10–12]. While
the Letter was being finished, we became aware of [13] who pre-
sented a bounce solution for tunneling in a quartic–linear poten-
tial. A different approach was taken by [14] who reconstruct fully
analytically tractable potentials, including the effects of gravity,
from analytically exact bubble geometries.

We present new exact solutions for tunneling within piecewise
potentials where the true vacuum potential is a quartic, see Figs. 1
and 2. The potential for φ > 0 (“on the right”) is given by

V R(φ) = V T − �V− + �V−
φ4−

(φ − φ−)4, (2)

where �V− ≡ V T − V− . For simplicity, we chose φ = 0 as the
matching point and V (φ = 0) = V T . We will choose the poten-
tial for φ < 0 (“on the left”) as either linear or quartic and discuss
the solutions in Sections 2 and 3 respectively.

For each piecewise potential, we proceed analogously to [9,12]:
First we solve the equation of motion for the scalar field in V R(φ),
subject to the boundary condition at the center of the bubble
φR(0) = φ0, φ′

R(0) = 0. We assume that the bubble nucleation
point is located at φ0 > 0, i.e. it is in the valley of the true vacuum.

0370-2693/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2012.01.026

http://dx.doi.org/10.1016/j.physletb.2012.01.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:koushik.dutta@desy.de
http://dx.doi.org/10.1016/j.physletb.2012.01.026


310 K. Dutta et al. / Physics Letters B 708 (2012) 309–313

Fig. 1. (a) Schematic plot of the piecewise linear–quartic potential. The left part of the potential is a linear function of φ , the right part – a quartic function. The bounce
describes tunneling from the field sitting in the false vacuum at φ+ towards the true vacuum located at φ− . (b) Schematic view of the bounce solution for (a). Inside the
bubble at r = 0, the field is at φ0 > 0. The bubble wall is located around RT , but not necessarily thin. Outside of the bubble at r = R+ , the field is still in the false vacuum.

Then, we solve the equation of motion for the field in V L , subject
to φL(R+) = φ+ , φ′

L(R+) = 0. In other words, we assume that at
some radius R+ (which can be ∞) outside of the bubble of true
vacuum, the field sits in the false vacuum. Then, we match the so-
lutions at some radius RT by enforcing φL(RT ) = φR(RT ) = 0 and
φ′

L(RT ) = φ′
R(RT ). This allows us to determine the constants RT ,

R+ , and φ0. Here, RT is roughly the radius of the bubble when
it materializes at φ = φ0, whereas the value comparing R+ to RT

gives us an idea about the width of the bubble wall.
It is then straightforward to integrate the action for φL and

φR , obtaining B . We compare the tunneling bounce action B for
the piecewise linear–quartic potential with the results of both the
thin-wall approximation and the piecewise linear–linear potential
solved in [9]. Finally, we compute the tunneling amplitude for the
piecewise quartic–quartic potential and compare it with the re-
sults obtained using the thin-wall approximation, as well as with
the tunneling amplitude in a piecewise linear–quartic potential.

2. Linear on the left, quartic on the right

In this section we compute the tunneling rate for a piecewise
potential of the form

V (φ) =
⎧⎨
⎩

V T − �V+
φ+ φ, φ � 0,

V T − �V− + �V−
φ4−

(φ − φ−)4, φ > 0,
(3)

where �V− ≡ V T − V− = λ4
4 φ4− and �V+ ≡ V T − V+ = −λ1φ+ are

the depths of the true and false minimum, see Fig. 1. Subject to the
boundary conditions φR(0) = φ0, φ′

R(0) = 0, solving the equation of
motion of the bounce, i.e. Eq. (1) on the right side of the potential,
we have [15]

φR(r) = φ− + 2(φ0 − φ−)

2 − �V−(φ0−φ−)2

φ4−
r2

. (4)

Similarly on the left side of the potential, subject to φL(R+) = φ+ ,
φ′

L(R+) = 0, we have the bounce solution

φL(r) = φ+ − �V+
8φ+

(r2 − R2+)2

r2
. (5)

A schematic view of the bounce is shown in Fig. 1(b).
We now determine the constants R+ and φ0 by solving the

matching equations for the two solutions φR(RT ) = 0, φL(RT ) = 0.
Using the first condition, we get φ0 in terms of RT

φ0 = φ3−
�V−R2

T

[
�V−R2

T

φ2−
+

(
1 −

√
2�V−R2

T

φ2−
+ 1

)]
, (6)

while the second condition gives

R+ =
√

RT

(
RT + 2

√
2αφ−√

��V−

)
. (7)

Here, we have introduced � = �V+/�V− and α = −φ+/φ− . Sim-
ilarly, using the smoothness of the solution at RT , i.e. φ′

R(RT ) =
φ′

L(RT ), we find

RT = φ−(
√

�(1 + 2α) + √
4α(1 + α) + �)

(1 − �)
√

2�V−
. (8)

Computing the exponent of the tunneling amplitude in terms of
RT gives

B = π2

6�V−

{
3R4

T (� − 1)�V 2− + 8
√

2R3
T α�V−

√
��V−φ−

+ 2φ4−
[
−1 +

√
1 + 2R2

T �V−
φ2−

]

+ 2R2
T �V−φ2−

[(
6α2 − 3

) + 2

√
1 + 2R2

T �V−
φ2−

]}
. (9)

Plugging RT from Eq. (8), we obtain a rather monstrous expression

B = π2φ4−
6�V−

{
4α

√
�

[
(1 + 2α)

√
� + √

4α(1 + α) + �

1 − �

]3

− 3

4

[
(1 + 2α)

√
� + √

4α(1 + α) + �

(1 − �)3/4

]4

+
[

(1 + 2α)
√

� + √
4α(1 + α) + �

1 − �

]2[
−3 + 6α2

+ 2

√
1 +

[
(1 + 2α)

√
� + √

4α(1 + α) + �

1 − �

]2]

+ 2

[
−1 +

√
1 +

[
(1 + 2α)

√
� + √

4α(1 + α) + �

1 − �

]2]}
.

(10)

To cross check our result, we take the thin-wall limit of Eq. (10)
by replacing � = 1 − ε

�V− , where ε is the energy difference be-
tween the true and false vacua. In the thin-wall limit ε � V T .
Performing a series expansion around ε = 0, the lowest order term
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