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The instability of rotating Kerr black holes due to massive scalar perturbations is investigated. It is well
known that a bosonic field impinging on a Kerr black hole can be amplified as it scatters off the hole. This
superradiant scattering occurs for frequencies in the range w < ms£2, where 2 is the angular frequency
of the black hole and m is the azimuthal harmonic index of the mode. If the incident field has a non-
zero rest mass, i, then the mass term effectively works as a mirror, reflecting the scattered wave back
towards the black hole. The wave may bounce back and forth between the black hole and some turning
point amplifying itself each time. This may lead to a dynamical instability of the system, a phenomena
known as a “black-hole bomb”. In this work we provide a bound on the instability regime of rotating
Kerr spacetimes. In particular, we show that Kerr black holes are stable to massive perturbations in the

regime [ > V2me.

© 2012 Elsevier B.V. All rights reserved.

If a black hole is perturbed in some small way, will the pertur-
bation die away over time? Or will it grow exponentially until it
can no longer be considered a perturbation and hence demonstrate
the instability of the black hole? The fundamental role played by
black holes in many areas of modern physics (astrophysics, high-
energy physics, condensed matter physics) makes it highly impor-
tant to study the nature of their stability.

Regge and Wheeler [1] have provided evidence for the sta-
bility of the spherically symmetric Schwarzschild black hole. In
particular, they have shown that if a Schwarzschild black hole is
perturbed, then the perturbation will oscillate and damp out over
time [1,2]. This implies that perturbation fields which propagate in
the black-hole exterior would either be radiated away to infinity or
swallowed by the black hole.

It is well known that realistic stellar objects generally ro-
tate about their axis and are therefore not spherical. Thus, an
astrophysically realistic model of wave dynamics in black-hole
spacetimes must involve a non-spherical background geometry
with angular momentum. The stability question of rotating Kerr
black holes is more complicated than the spherically-symmetric
Schwarzschild case. Press and Teukolsky [3,4] have shown that
rotating black holes are stable under free gravitational perturba-
tions (see also [5] and references therein). However, the superra-
diance effect may change this conclusion. Superradiant scattering
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is a well-known phenomena in quantum systems [6,7] as well as
in classical ones [8,9]. Considering a wave of the form eim$e—i®t
(where m and w are real) incident upon a rotating object whose
angular velocity is £2, one finds that if the frequency w of the in-
cident wave satisfies the relation

w<m, (1)

then the scattered wave is amplified.

A bosonic field impinging upon a rotating Kerr black hole can
be amplified if the superradiance condition (1) is satisfied, where
in this case

a
T2 g2
ryta

(2)
is the angular velocity of the black-hole horizon. Here r; and a
are the horizon radius and the angular momentum per unit mass
of the black hole, respectively. The energy radiated away to infinity
may actually exceed the energy present in the initial perturbation.
Feeding back the amplified scattered wave, one can gradually ex-
tract the rotational energy of the black hole. Press and Teukolsky
suggested to use this mechanism to build a black-hole bomb [10]: If
one surrounds the black hole by a reflecting mirror, the wave will
bounce back and forth between the black hole and the mirror am-
plifying itself each time. Thus, the total energy extracted from the
black hole will gradually grow.

Remarkably, nature sometimes provides its own mirror [9]: If
one considers a massive scalar field with mass M scattered off a
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rotating black hole, then for v < u = MG /hc the mass term effec-
tively works as a mirror [11-17]. The physical idea is to consider a
wave packet of the massive field in a bound orbit around the black
hole [12,13]. The gravitational force binds the field and keeps it
from escaping to infinity. At the event horizon some of the field
goes down the black hole, and if the frequency of the wave is in
the superradiance regime (1) then the field is amplified. In this
way the field is amplified at the horizon while being bound away
from infinity. This may lead to a dynamical instability of the sys-
tem [11-17].

Former studies [11-17] of the dynamics of massive scalar fields
in rotating Kerr spacetimes have shown that the superradiant in-
stability (the black-hole bomb mechanism) depends on two param-
eters:

e The angular frequency £2 of the black hole.

e The dimensionless product of the black hole mass M and the
field mass w. The product M is actually the ratio of the black
hole size to the Compton wavelength associated with the rest
mass of the field. (We shall henceforth use natural units in
which G =c=Fh =1. In these units u has the dimensions of
1/length.)

In particular, it has been proved [18] that the solutions of the mas-
sive scalar equation in the Kerr spacetime are stable in the regime

2M  a?
u=>ms 1+—+7. (3)
r4 r+

Recently, an improved bound for p above which the solutions of
the massive scalar equation are stable was given in [19]:

2M
w=me [14+=—. (4)
It

Below we shall provide a stronger bound for the stability regime of
rotating Kerr black holes: we shall show that the solutions of the
massive Klein-Gordon equation in the Kerr spacetime are stable in
the regime

w=me-v2 (5)

for all a values.

The physical system we consider consists of a massive scalar
field coupled to a rotating Kerr black hole. The dynamics of a scalar
field ¥ of mass w in the Kerr spacetime [20] is governed by the
Klein-Gordon equation

(VOVa — pu?)¥ =0. (6)
One may decompose the field as

Wi (t, 7,6, ) = €™ Sy (6; aw) Ry (15 aw)e ™, (7)

where (t, 1,6, ¢) are the Boyer-Lindquist coordinates [20], w is the
(conserved) frequency of the mode, [ is the spheroidal harmonic
index, and m is the azimuthal harmonic index with - <m <.
(We shall henceforth omit the indices | and m for brevity.) With
the decomposition (7), R and S obey radial and angular equa-
tions both of confluent Heun type coupled by a separation constant
K (aw) [21-25]. The sign of w; determines whether the solution is
decaying (w; < 0) or growing (w; > 0) in time. Remembering that
any instability must set in via a real-frequency mode [26] we shall
consider here modes with |w;| < wg. (It should be emphasized
that Ref. [26] considered only the massless case.)

The angular functions S(6;aw) are the spheroidal harmonics
which are solutions of the angular equation [22,27-30]
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=0. (8)

The angular functions are required to be regular at the poles 6 =0
and 6 = 7. These boundary conditions pick out a discrete set of
eigenvalues {Kj;,} labeled by the integers [ and —I <m <L

The radial Klein-Gordon equation is given by [28-31]

Ai Ad—R +UR=0 9)
dr\" dr -

where A =12 — 2Mr +d?, and
U=[(r*+a*)w- ma]2 + A[2maw — K — p2(* +d%)]. (10)

The zeroes of A, r+ = M + (M2 —a®)1/2, are the black hole (event
and inner) horizons.

We are interested in solutions of the radial equation (9) with
the physical boundary conditions of purely ingoing waves at the
black-hole horizon (as measured by a comoving observer) and a
decaying (bounded) solution at spatial infinity [12,15]. That is,

R~e i@ M2V a5r 51, (y—> —00), (11)
and

1 Vo)
R~;e‘ =0 a5 5 00 (y = 00), (12)

where the “tortoise” radial coordinate y is defined by dy = [(r? +
a®)/Aldr.! For frequencies in the superradiant regime (1), the
boundary condition (11) describes an outgoing flux of energy and
angular momentum from the rotating black hole [12,15]. Note also
that a bound state (a state decaying exponentially at spatial infin-
ity) is characterized by

w? < pP. (13)

The boundary conditions (11)-(13) single out a discrete set of res-
onances {w;,} which correspond to the bound states of the massive
field [12,15]. (We note that, in addition to the bound states of the
massive field, the field also has an infinite set of discrete quasi-
normal resonances [32-35] which are characterized by outgoing
waves at spatial infinity.)

It is convenient to define a new radial function v by

v =A2R, (14)

in terms of which the radial equation (9) can be written in the
form of a Schrédinger-like wave equation

d%y
W+(w2—v)w=o, (15)
where

U+M?*—a?

Below we shall need the asymptotic form of the effective potential
which is given by

T It should be noticed that the solutions of Eq. (9) with the boundary conditions
(11)-(12) do not assume values in the natural Hilbert space that is associated to the
reduced Klein-Gordon equation of Refs. [18,19] due to their asymptotic behavior at
Ti.
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