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The entropy of the Schwarzschild-anti de Sitter black hole in the recently proposed four-dimensional
critical gravity is trivial in the Euclidean action formulation, while it can be expressed by the area law
in terms of the brick wall method given by 't Hooft. To resolve this discrepancy, we relate the Euclidean
action formulation to the brick wall method semiclassically, and show that the entropy of the black hole
can be expressed by the area law even at the critical point.
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1. Introduction

Since it has been claimed that the general relativity is non-
renormalizable, there have been extensive studies for quantum
theory of gravity such as string theory, conventional perturbative
gravity, and so on. In particular, a perturbatively renormalizable
gravity theory can be built by adding quadratic curvature terms
to the Einstein gravity [1,2]. However, theories including higher-
order time-derivative terms should endure massive ghost modes.
In recent studies on the three-dimensional topologically massive
gravity [3,4] including a cosmological constant, it has been shown
that there exists some critical point such that the massive mode
becomes massless and carries no energy, so that the problem can
be solved [5]. Similarly, in the four-dimensional quadratic gravity
theory with a cosmological constant, one can find a critical point,
where the massive ghost mode disappears.

The model called the critical gravity [6] can be defined by

1 1
I =— | d*/—g|R-24 R wR*™ — —R? )|,
ccle] 167G X g|: +a< v 3 )i|
(1)

where A is a cosmological constant. At the critical point, o =
3/2A, in spite of the renormalizability, it seems to be trivial in
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the sense that the mass and the entropy of a Schwarzschild-anti
de Sitter (SAdS) black hole which is a solution to this theory be-
come zeroes [6]. Moreover, these results can be also confirmed by
the Euclidean action formulation of the black hole thermodynam-
ics [7-9].

On the other hand, it has been suggested by Bekenstein that
the intrinsic entropy of a black hole is proportional to the surface
area at the event horizon [10-12], and then the quantum field
theoretic calculation for the Schwarzschild black hole has been
given by Hawking [13]. Actually, one of the best way to repro-
duce the area law of black holes is to use the brick wall method
suggested by 't Hooft [14]. By considering the fluctuation of a mat-
ter field around the black hole semiclassically, one can always get
the desired results; however, this result is not compatible with
the result of the Euclidean action formulation for the critical grav-
ity.

In this Letter, we would like to resolve the above-mentioned is-
sue and study how to derive the entropy satisfying the area law
in the Euclidean action formulation. First task is to get a nontrivial
free energy by taking into account higher-order loop corrections in
the Euclidean path integral and then the corresponding entropy
may be nontrivial. For convenience, the fluctuation of the met-
ric field will be ignored, i.e. our calculations will be performed
in semiclassical approximations. We recapitulate the Euclidean ac-
tion formulation by carefully considering the appropriate boundary
term in Section 2. In contrast to conventional cases, the entropy
is trivially zero, assuming the critical condition. It means that the
partition function is trivial so that the area law of the entropy does
not appear. So, we consider the one loop correction of the scalar
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degrees of freedom around the black hole in Section 3 and relate
the Euclidean action formulation to the brick wall method semi-
classically. Eventually, the free energy turns out to be nontrivial
even at the critical condition. It is actually compatible with the free
energy obtained from the brick wall method along with some con-
ditions. As a result, it gives the area law of the black hole entropy
in Section 4. Finally, in Section 5, summary and some discussions
are given.

2. Thermodynamics with the Euclidean action formulation

We start with a scalar field ¢ minimally coupled to the critical
gravity as Iyt = Icg + Iy, where the scalar field action is

1 1
Iylg, 1= —/d4x\/—_g|:§(v¢)2 + §m2¢2i|. 2

For ¢ =0, the SAdS black hole is just a classical solution to this
model. The line element of the SAdS black hole is given by ds? =
—fdt?> + f~1dr? +r?d2? with

XM A,
fn=1 . 37
= <1 —r—rh> |:] - ?(r2+rhr+rﬁ):|, (3)

where M = (r,/2G)(1 — Arfl/3) > 0 is the mass parameter of the
black hole, A < 0 is the cosmological constant, and r, is the radius
of the horizon. The free energy F© for this vanishing scalar solu-
tion can be obtained from the Euclidean action formulation [7-9],

ZO1g] = exp(ilcclg]) = exp(—BF?). 4)

The crucial ingredient for this calculation is to find the consistent
boundary term. Following Ref. [15], an auxiliary field f,, is intro-
duced to localize the higher curvature terms so that the Euclidean
version of the action (1) and the corresponding boundary term can
be written in the form of

1 1
Iccz—m d4X\/§|:R—2A+fMV<RMU_EgMVR>
M
1w 5
_Ef (f;w_g/wf) ) (5)
Ip=—re— Ex. V2K + fU(Kij — yii K], (6)

IM

where y;; and Kj; are the induced metric and the extrinsic curva-
ture of the boundary, respectively. And f”j in the boundary term is
defined as fU = fii 4+ friNJ + fUNi 4+ fTNINJ with Ni = —g'i /g™
for the hypersurface described by r =rg. In the Euclidean geom-
etry, the Euclidean time is defined by 7 =it and should be iden-
tified by T = 7 + By to avoid a conical singularity at the event
horizon, where Sy is the inverse of the Hawking temperature.

Next, taking the boundary to the infinity ro — oo, the free en-
ergy is obtained as

T A
FO =710 = laewm) = [1 =20 A3 = (1+ 212 ). (D)
4G 3
where I = Icg + Ig and Ivacuum = I|m=0. The Hawking temperature
for the given metric function (3) is calculated as
2
1- Ar

-1
Th="Py = 471y

(8)

Then, the thermodynamic first law reads the entropy and the en-
ergy of the black hole,

FO ar2
s© :,35,_8 — =11 _2aA/3]—G“, 9)
A
EO=FO4p.1sO=11 —2aA/3]—2rhG (1 - gﬁf)y (10)

which are exactly same with those obtained in Ref. [6]. Note that
the factor [1 — 2a¢A/3] vanishes at the critical point o = 3/2A.
Thus, we can confirm that the energy and the entropy of the SAdS
black hole at the critical point vanish in the Euclidean action for-
mulation.

As was mentioned in the previous section, the entropy from the
brick wall method satisfies the area law, which is connected with
the nontrivial thermodynamic quantities such as energy and heat
capacity. At first glance, there seems to exist incompatibility be-
tween the Euclidean action formulation and the brick wall method.
In what follows, we shall show that the semiclassical treatment of
the Euclidean action formulation can be related to the brick wall
method.

3. Semiclassical Euclidean action formulation

Now, we take the classical background as the SAdS black hole
metric along with ¢ =0, and then consider the fluctuated quan-
tum field semiclassically. The partition function up to one loop
order for the scalar field is expressed as

Z[gl = 21g1zV[g]
=exp(—BF?)exp(—pF")
_ ilcclg] f Dells1&-91 (11)

where the total free energy consists of F = F(© 4+ F()_ Note that
the tree level free energy F(© is trivial at the critical point as seen
in the previous section, so that the nontrivial contribution to the
free energy should come from the one loop effective action.

The one loop partition function Z(" can be written as

zWg= /Dd)e”‘”

— det™12(—0 + m?), (12)

and the effective action W, becomes
i
Wy =3I det(—0 +m?)

= %Trln(—D + mz)

i [ d*d*

=3 | Gy In(k, k" +m?), (13)
where k;, is the conjugate momentum of x*. Note that a (covari-
ant) Fourier transform in curved spacetimes has not been estab-
lished [16-19]. However, the manifold can be split into a number
of small pieces, in which we can consider a Riemann normal coor-
dinates, i.e. [, d*% /=g~y [y d*%, where X represents the
Riemann normal coordinates [20]. Then, one can perform the cal-
culation in the momentum space by using the Fourier transform,
—8 +m? — k,k* +m?, where k is the momentum measured in
the local coordinates. Consequently, it is possible to recover the
global coordinates for the covariant result (13).

In the Euclidean geometry, the time component of the four vec-
tor k,, becomes 2mn/(—ip), and the integrals ['dt and | dko/(27)
can be replaced by —i [dr and (—ip)~1 > . Tespectively [21].
Then, the Euclidean one loop effective action at the finite temper-
ature can be written as
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