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We study the hadronic production of four-quark states with double heavy quarks and double light
antiquarks at LHC. The production mechanism involves a color anti-triplet diquark cluster consisting
of double heavy quarks that is formed from the double heavy quark-antiquark pairs via the gg fusion
hard process first, followed by the fragmentation of the diquark cluster into a four-quark (tetraquark)
state. Predictions for the production cross sections and their differential distributions are presented. Our
results show that it is promising to discover these tetraquark states in LHC experiments both for large
number events and for the unique decay signatures in detectors.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

LHC experiments provide a unique opportunity to explore some
exotic states of heavy quarks. Among them, particularly interesting
states are the four-quark states consisting of double heavy quarks
and double light antiquarks (or their charge conjugator). The exis-
tence of such states can be inferred from heavy quark symmetry.
The double heavy quarks in the color anti-triplet state may form a
diquark cluster by the attractive strong interactions. In the heavy
quark limit, the double heavy quarks move slowly, with a small
relative velocity v in the rest frame and within a shorter dis-
tance (1/mv), compared to the size of the light degree of freedom
(1/ΛQCD). Thus, in the tetraquark states, the double heavy quarks
form a color anti-triplet diquark cluster, which contributes color
interactions to the double light antiquarks as a color source of a
heavy antiquark. The other two light antiquarks move around it
with attractive interactions between them. The dynamics of the
light degrees of freedom of these tetraquark states are similar to
those of heavy baryons. This picture is supported by scrutinizing
the typical sizes of real hadrons. The size of the heavy quarko-
nium is approximately 0.2–0.3 fm, while that of the light hadrons
is approximately 1 fm. The masses of such states can be roughly
estimated as the sum of the masses of the two heavy quarks
and ΛQCD . For the tetraquark states containing the cc, cb, and
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bb quarks, their masses are approximately 3.4 GeV, 6.8 GeV, and
10.2 GeV, respectively. The flavor features of this sort of hadron
are very different from those of the conventional hadrons. Once
they are discovered in experiments, it will be evidence for the ex-
istence of the tetraquark states. Some theoretical studies on these
states have been presented in the literature [1–6].

The spin of a tetraquark state is a composition of the spins of
the four quarks and the relative orbital angular momenta between
them. For S-waves, all orbital angular momenta vanish. Thus, the
spin of the tetraquark state is simply the composition of the spin
of each quark or antiquark. The composition of the spins of dou-
ble heavy quarks may be 0 or 1. However, when two heavy quarks
are identical, only the spin 1 state is allowed due to the antisym-
metry by exchanging identical fermions. It is the same case for the
light antiquarks sector. In this paper, we are interested in only the
tetraquark states, in which all orbital angular momenta vanish. We
denote these states by T i

Q 1 Q 2
(i = 0,1), where Q 1 and Q 2 repre-

sent the heavy flavor indexes, and i is the spin of the double heavy
quark subsystem.

As bound states with masses that are quite large, they are dif-
ficult to produce in typical high energy machines. Nevertheless,
at LHC, they can be produced efficiently via a direct production
process that involves effects occurring at several distinct distance
scales. First, two heavy quark-antiquark pairs are produced via the
gluon–gluon fusion hard subprocess at a distance scale of 1/m or
shorter. Second, for the two heavy quarks produced that have a
small relative velocity v , there are certain probabilities to form
a color anti-triplet diquark cluster at a distance scale of 1/mv .
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Finally, the diquark cluster evolves into the tetraquark state via the
fragmentation process by picking up two light antiquarks from the
vacuum at a distance scale of 1/ΛQCD .

In this paper, we calculate the hadronic production cross sec-
tions of T 1

cc , T i
bc (i = 0,1), and T 1

bb via the gluon–gluon fusion
process at LHC. Our results show that a number of these parti-
cles can be produced. We also give the signatures to detect those
particles.

The rest of the paper is organized as follows. In Section 2, we
present the calculation of the subprocess gg → T i

Q 1 Q 2
Q̄ 1 Q̄ 2 + X .

Section 3 is devoted to the numerical results of the cross sections
of the tetraquark states at LHC and at Tevatron. In Section 4, we
discuss the results and the signals in the detectors.

2. Cross section of gg → T i
Q 1 Q 2

Q̄ 1 Q̄ 2 + X

As mentioned above, in the production process of the tetraquark
states T i

Q 1 Q 2
, there are three hierarchical distance scales, i.e.,

1/m � 1/mv � 1/ΛQCD . Accordingly, the cross sections of the
subprocesses for the production of the S-wave tetraquark states,
T i

Q 1 Q 2
, can be factored into three different parts to account for

physical effects occurring at those distinct distance scales:

σ̂
(

gg → T i
Q 1 Q 2

) = 1

2ŝ

1

64d

∫
dΠ3 C 3̄(αs, Q 1 Q 2)

∣∣Ψ3̄(0)
∣∣2

×
1∫

0

dx D 3̄→T i
Q 1 Q 2

(x), (1)

where d = 1 for T 0
bc and T 1

bc , and d = 2 for T 1
bb and T 1

cc ; ŝ is the
squared invariant mass of the double gluons; dΠ3 is the Lorentz
invariant three-body phase space integral element; C 3̄(αs, Q 1 Q 2)

is the short-distance coefficient describing the production rate of
the color anti-triplet point-like Q 1 Q 2 state at the energy scale m
or higher; Ψ3̄(0) is the wave function at the origin of the S-wave
diquark state; and D 3̄→T i

Q 1 Q 2
(x) is the fragmentation function of

the diquark into the color-singlet tetraquark state T i
Q 1 Q 2

.
The short-distance coefficient can be calculated by perturbative

QCD and can be expanded in terms of αs at the short-distance en-
ergy scale m or higher. The rest parts are non-perturbative effects
in nature. To estimate the production cross sections, one needs
to determine their numerical values. The formation of the diquark
cluster from the free double heavy quarks is described by the wave
function at the origin. Their numerical values can be estimated by
the potential model. The diquark cluster provides an anti-triplet
color source as a heavy antiquark. Thus, in the heavy quark limit,
its fragmentation probability for forming the tetraquark states can
then be approximately described by that for forming the heavy
baryons by a heavy quark.

In this paper, we calculate the cross sections of the hadronic
production of the S-wave states, T 1

cc , T 1
bc , T 0

bc , and T 1
bb , at LHC. We

compute the tree level short-distance coefficients C 3̄(αs, Q 1 Q 2) in
the leading order α4

s using perturbation QCD. By estimating the
nonperturbative matrix elements, we carry out the numerical cal-
culations of the total cross sections. Our results show that a num-
ber of these particles can be produced.

We first calculate the short-distance coefficients C 3̄(αs, Q 1 Q 2)

at the tree level. They are proportional to the square of the ma-
trix elements M(gg → (Q 1 Q 2)3̄). To calculate the matrix elements,
we must calculate the subprocess of gg → Q 1 Q 2 Q̄ 1 Q̄ 2, with Q 1
and Q 2 moving with the same 3-velocity and in the color anti-
triplet state. At the tree level, the production processes involve 36
Feynman diagrams for gg → bcb̄c̄, and 72 Feynman diagrams for
gg → bbb̄b̄ and gg → ccc̄c̄. The amplitudes can be classified as six

gauge-invariant subsets in terms of six independent color bases.
Therefore, the calculations of the amplitudes and their squares are
straightforward.

Ψ3̄(0)’s are the wave functions at the origin of the S-wave
diquark clusters. Their precise values are difficult to determine
because the large range interaction potential between the dou-
ble heavy quarks in the color anti-triplet state is not very clear,
while the short range one is dominated by the Coulomb potential.
Reasonably, we take these values predicted by solving Schödinger
equation with the Coulomb potential, v(r) = −2αs/(3r). Then, the
predicted |Ψ3̄(0)|2’s are 0.143, 0.0382, and 0.0198 GeV3 for bb,
bc, and cc diquark systems, respectively. Including the confine-
ment part, the wave function is squeezed to the central region,
and hence the wave function at the origin is enhanced. Actually,
we have performed numerical calculations for the diquark state by
solving the Schrödinger equation using Coulomb potential plus the
linear potential fixed in the color-singlet case, and the numerical
value of the wave function at the origin is enhanced by 10%–30%.
A more reliable prediction for this nonperturbative number can be
obtained by a nonperturbative method such as lattice QCD.

We now turn to the fragmentation function of the (Q 1 Q 2)3̄-
cluster to a tetraquark state. As discussed above, the heavy diquark
cluster in the color anti-triplet state provides the same color source
as the heavy antiquark to the light antiquarks in the limit of the
ratio of the size of the diquark over that of the light antiquarks in
the tetraquark state. Thus, the fragmentation probabilities to pro-
duce the tetraquark states T i

Q 1 Q 2
from the heavy diquarks are the

same as that to produce the heavy baryons from the heavy quarks.
Let us take a QED example to illustrate it. Imagine a hydrogen
ion or deuterium ion passing through a material. The probabilities
forming the hydrogen atom or the deuterium atom are the same if
the velocities of both ions are the same because they possess the
same electric charge. The fragmentation function is defined in the
framework of infinite momentum where the parton moves at the
speed of light.

The fragmentation functions to produce the tetraquark states
are nonperturbative in nature. Thus, their shapes can only be de-
scribed by certain phenomenological models [7,8]. One of the most
commonly used models is the Peterson model [7], in which the
fragmentation function takes the following form:

D 3̄ → T i
Q 1 Q 2

(x) = N

x[1 − (1/x) − εQ 1 Q 2/(1 − x)]2
(2)

where εQ 1 Q 2 is the only parameter determining the shape of the
fragmentation function and N is the normalization constant. Once
the fragmentation probability to produce the tetraquark state is
given, N is fixed by the following condition:∫

dx D 3̄ → T i
Q 1 Q 2

(x) = R. (3)

The fragmentation probabilities of c → Λc and b → Λb have
been measured in e+e− collisions [9–11]. According to PDG 2006
[9], R(c → Λc) = 0.094 ± 0.035, and R(b → Λb) = 0.099 ± 0.017.
These results are approximately 0.1. Therefore, as a good approxi-
mation, we may take the fragmentation probability of (Q 1 Q 2)3̄ →
T i

Q 1 Q 2
, the value of R in Eq. (3), to be 0.1.

From Eqs. (2) and (3), we know that the normalization con-
stant N in the Peterson model is dependent on the parameter εQ .
The model suggests a scaling behavior for the parameter εQ that
is proportional to 1/m2

Q . The εb determined by experiments is ap-
proximately 0.003 ∼ 0.006 [10,12]. Using the scaling behavior and
taking εb to be 0.004, we predict that εbc = (

mb
mbc

)2εb � 0.0023,

εcc = (
mb
mcc

)2εb � 0.011, εbb = (
mb
mbb

)2εb = 0.001 and the corre-
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