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A construction of the Coulomb–Breit Hamiltonian for a pair of fermions, considered as a quantum two-
body system, immersed in an arbitrary background gravitational field described by Einstein’s General
Relativity is presented. Working with Fermi normal coordinates for a freely falling observer in a spacetime
region where there are no background sources and ignoring the gravitational back-reaction of the system,
the effective Coulomb–Breit Hamiltonian is obtained starting from the S-matrix element corresponding to
the one-photon exchange between the charged fermionic currents. The contributions due to retardation
are considered up to order (v/c)2 and they are subsequently written as effective operators in the
relativistic quantum mechanical Hilbert space of the system. The final Hamiltonian includes effects linear
in the curvature and up to order (v/c)2.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The connection between Einstein’s General Relativity (GR), the
dynamical theory of spacetime, and Quantum Mechanics (QM) has
a long history in physics and more than ever is nowadays a subject
of intense research, both from theoretical and experimental per-
spectives, mainly in connection with possible deviations from GR
and/or QM. Until now, experiments have already confirmed that in-
ertia and Newtonian gravity affect quantum particles, mainly elec-
trons and neutrons, in ways that are fully consistent with GR down
to distances of the order of 10−8 cm. Gravitational-inertial fields
leave their mark on particle wave functions in a variety of ways;
particularly, they induce quantum phases that have been measured
in some of the most renowned experiments on this topic [1–6]. Re-
cently, the purpose of tests of gravity has been mainly focused in
determining the validity of the equivalence principle at the level
of atoms, molecules, quasi-particles and antimatter. This translates
into a need for higher precision tests of GR, and atomic physics
together with quantum optics offer some of the most accurate re-
sults and promising scenarios.

Most of the experimental tests of GR within the quantum realm
arise from predictions on fully covariant wave equations where
inertia and gravity appear as external classical fields, providing
very valuable information on how Einstein’s views carry through
into the quantum world. However, many of the initially proposed
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and tested effects considered mainly one-particle systems. This ap-
proach leaves aside the possibility of using the internal quantum
structure of atoms or molecules as additional parameters. Never-
theless, this situation is drastically changing recently due to the
fast development of matter wave interferometry [7–9].

Broadly speaking, previous work related to the description of
atoms in a background gravitational field can be divided in three
main branches, though with much interrelation among them:
(i) the study of gravitational modifications to atomic spectra of
mainly hydrogen-like atoms, which were considered as a quantum
reduced mass revolving around some force center [10–21]. A two-
body description of the atom can be found in Refs. [22–24]. (ii) Re-
stricted proofs of the equivalence principle for test bodies made
of classical electromagnetically interacting particles, within the
PPN framework or within the THεμ formalism for static spheri-
cally symmetric spacetimes [25–28]. The formulation of a quantum
equivalence principle has been studied in Refs. [29,30]. (iii) Tests
and studies of the gravitational red shift, where atomic clocks were
described as quantum mechanical systems within the THεμ or PPN
formalisms [31–37].

In this Letter we consider the effect of a classical background
gravitational field, described by GR, upon matter at the atomic
level, where the use of QM becomes mandatory. We extend pre-
vious work in the following aspects: (i) We will consider the case
of hydrogen-like atoms described as two-body systems in the way
first discussed in Ref. [23]. The inclusion of the position of the
atom as a new degree of freedom may provide additional cou-
plings to probe the effects of gravity upon quantum objects in the
region where tidal forces become important. (ii) The background
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gravitational field has no particular spatial symmetry. (iii) Fol-
lowing the steps of Ref. [38], a quantum mechanical relativistic
two-body effective potential in the background gravitational field is
produced, which takes into account retardation effects arising from
the one-photon exchange between the currents. This constitutes
the gravitational generalization of the relativistic Coulomb–Breit
potential [39].

Most of the general assumptions underlying this work are sim-
ilar to those of Refs. [10,13,15,23,25,26]: (i) The external grav-
itational field is well described by GR, so that it satisfies Ein-
stein’s field equations. Additionally, we ignore back-reaction ef-
fects. (ii) All the interacting particles are influenced by the back-
ground gravitational field at the quantum level. (iii) There exists
an ideal freely falling observer in a region outside the sources of
the background gravitational field. This observer determines that,
in his coordinate patch, the metric of the spacetime has the form1

gαβ = ηαβ + Qαbβcxbxc ≡ ηαβ + hαβ

(
x0), (1)

where

Q0a0b = −R̆0a0b
(
x0), Q0abc = −2

3
R̆0abc

(
x0),

Qabcd = −1

3
R̆abcd

(
x0). (2)

Here xa are three spatial coordinates, x0 is the proper time of the
observer and R̆αβγ δ is the projection of the background Riemann
tensor on the orthonormal tetrad carried by him, which in general
depends on the proper time due to the motion of the observer.
The weakness of the gravitational interaction induces very small
corrections upon the observables, so that in our final results we
preserve only quantities up to first order in R̆αβγ δ . The metric (1)
is that of a freely falling observer using Fermi normal coordinates,
which are appropriate to describe local experiments performed by
inertial observers [40]. (iv) The spatial extension and the time du-
ration of events related to observations in the quantum system are
very small compared with the characteristic lengths and times of
appreciable changes in the observer’s Riemann tensor [15]. This al-
lows well-defined energy levels and the use of time-independent
perturbation theory. Within this adiabatic approximation it is pos-
sible to ignore the x0 dependence of the metric and of all the
objects constructed from it: the time coordinate becomes just a
fixed but arbitrary parameter [26]. (v) Conditions (i) and (iii) im-
ply that the observer determines that his Ricci tensor R̆α

β is equal
to zero. We also assume that during the measurements performed
by the observer there are no particle creation effects due to the
gravitational field.

The coupled equations that describe the electromagnetic inter-
action between spin 1/2 fermions in a background gravitational
field, outside the gravitational sources, are

ich̄γ μDμψ − mc2ψ = qγ μψ Aμ,

DμDμ Aν = qψ̄γ νψ ≡ Jν, (3)

where we have chosen the Lorentz gauge Dμ Aμ = 0. Here Dμ =
∂μ − i

2 ωBD
μ JBD is the covariant derivative written in general

terms, ωᾱ
β̄μ = eᾱ

δ(Dμeβ̄
δ) is the spin connection, and JBD are the

Lorentz group generators in the corresponding representation for
each field.

1 Our metric has signature −2, ηᾱβ̄ = diag(−1,+1,+1,+1), eᾱ
μ is the tetrad

such that eᾱ
μηᾱβ̄ eβ̄

ν = gμν , ᾱ = {0̄, 1̄, 2̄, 3̄} = {0̄, ā} are tetrad indices, while μ =
{0,1,2,3} = {0,a} are coordinate indices. Also eᾱ

μeᾱ
ν = δ

μ
ν . The symbol � denotes

an equality including at most terms linear in the curvature.

2. The photon propagator

The fundamental quantity required to construct an effective
relativistic Hamiltonian describing the electromagnetic interaction
between two charges is the curved space Feynman Green function
Gμ

ν(x, x′) for the photon [41]. We consider its Hadamard repre-
sentation because it is valid in all spacetimes [43]. The differential
equation for the electromagnetic Feynman Green function is

�Gα
β

(
x, x′) = −κα

β

(
x, x′)δ4

(
x, x′), (4)

where � ≡ gμν DμDν , κα
β is the parallel propagator bitensor be-

tween x′ and x, and δ4(x, x′) is the invariant Dirac delta distribu-
tion for our observer. The solution to (4), that vanishes at infinity
for arbitrary time, is

Gαβ

(
x, x′) = 1

(2π)2

(
καβ(x, x′)

σ (x, x′) + iε

)
. (5)

The expressions for the parallel propagator κα
β(x, x′) ≡

eγ̄
α(x)eγ̄

β (x′) are2

κ00 � η00 + 1

2

[
h00(x) + h00

(
x′)],

κ0a � 1

4

[
3h0a(x) + h0a

(
x′)], (6)

κa0 � 1

4

[
h0a(x) + 3h0a

(
x′)],

κab � ηab + 1

2

[
hab(x) + hab

(
x′)]. (7)

Here σ(x, x′) is the Synge world function, given by

σ
(
x, x′) � 1

2
ημν

(
x − x′)μ(

x − x′)ν

+ 1

2
Qμaνb Aab(x − x′)μ(

x − x′)ν (8)

with

Aab ≡
[

1

2

(
x′axb + xax′b) + 1

3

(
x − x′)a(

x − x′)b
]
. (9)

Note that expression (5) contains terms of higher order than first
in the curvature, arising from the denominator σ + iε . We will
keep the complete singular structure of the Green function be-
cause, in the following calculations, we will require expressions for
the corresponding poles up to first order in hμν . Let us remark that
σ(x, x′) = σ(x,x′, x0 − x′ 0).

3. The one-photon interaction

In order to incorporate gravitational corrections into the elec-
tromagnetic interaction between two charged particles, we will use
the S-matrix method [41] as described in Ref. [38], but generalized
to a slightly curved space [42]. We need to evaluate the S-matrix
element corresponding to the exchange of one photon between the
two fermionic currents located at x2 and x1, shown in Fig. 1, which
is given by

S(1)

f i = 1

ch̄

∫
Jμ(2)

f i (x2)Gμν(x2, x1) Jν(1)

f i (x1)d4 V 2 d4 V 1, (10)

where Gμν(x2, x1) is the electromagnetic Feynman Green func-
tion (5) and d4 V ≡ √−g(x)d4x is the invariant volume element

2 The orthonormal tetrad corresponding to the metric (1) is: e0̄0 = −1 − 1
2 h00,

e0̄a = − 1
4 h0a , eā0 = 3

4 h0a , eāb = ηab + 1
2 hab [15].
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