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The relation between the separability of a system of charged particles in a uniform magnetic field and
Galilean symmetry is revisited using Duval’s “Bargmann framework”. If the charge-to-mass ratios of the
particles are identical, eq/mgq = € for all particles, then the Bargmann space of the magnetic system is
isometric to that of an anisotropic harmonic oscillator. Assuming that the particles interact through a
potential which only depends on their relative distances, the system splits into one representing the
center of mass plus a decoupled internal part, and can be mapped further into an isolated system using
Niederer’s transformation. Conversely, the manifest Galilean boost symmetry of the isolated system can
be “imported” to the oscillator and to the magnetic systems, respectively, to yield the symmetry used
by Gibbons and Pope to prove the separability. For vanishing interaction potential the isolated system is
free and our procedure endows all our systems with a hidden Schrédinger symmetry, augmented with
independent internal rotations. All these properties follow from the cohomological structure of the Galilei

group, as explained by Souriau’s “décomposition barycentrique”.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Kohn'’s theorem [1], commonly but vaguely ascribed to Galilean
invariance, says that a system of charged particles in a uniform
magnetic field can be decomposed into center-of-mass and relative
motion if the charge/mass ratios are identical,

eq/Mq = € = const. (1)

The term “Galilean invariance” has been recently been criticized
by Gibbons and Pope [2], though, who argue that their symmetry
transformation X — X+ d(t) is not of the usual Galilean form X —
X+ bt, and belongs rather to the Newton-Hooke group.

In this Note we show that the two, apparently contradictory,
statements can be conciliated: d(t) is a Galilean boost, — but it
acts in a way which is different form the usual one. Separability
does follow therefore from “abstract” Galilean invariance — as it does
from Newton-Hooke symmetry also. In detail, we show that when
(1) holds the Bargmann space of the magnetic-background system
is conformally related to an isolated system with ordinary boost
symmetry, and “importing” it guarantees the existence of a rest
frame also for the magnetic-background. The “imported boost” co-
incides with the symmetry used by Gibbons and Pope [2].
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In the absence of an interaction potential, the system carries,
moreover, a “hidden” Schrodinger symmetry obtained by “import-
ing” that of a free system, augmented with internal rotations. Our
results shed new light on Kohn’s theorem and generalize Souriau’s
“décomposition barycentrique” [3].

2. A “relativistic” proof of Kohn’s theorem

We demonstrate our statements in the Kaluza-Klein-type
framework [4] which says that the null geodesics of a manifold in
d + 2 dimensions with Lorentz metric,

. 2U
ds® = dx? + 2dtds — R dt? 2)

project, for a particle in (d 4+ 1)-dimensional non-relativistic space-
time with coordinates (%,t), according to Newton’s equations,
mx = —VU. The generalization of (2) to N particles in d dimen-
sions in a potential U is provided by the (Nd + 2) dimensional
metric [4],

N m 2U N
Z—ad?{g—i-zdtds— == ae? wherem:Zma. (3)
a=1 m m a=1

A remarkable property of the metric (2) is that it defines a
preferential Newton-Cartan structure [5] on non-relativistic space-
time obtained by projecting out the “vertical” direction generated
by the lightlike vector 9; [4]. In the quadratic case U = £§w?X?,
(2) describes, from the mechanical point of view, an [attractive of
repulsive] harmonic oscillator [4]. In a relativistic language (2) is
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a pp-wave, and the quotient is Newton-Hooke space-time [2,5],
which carries a Newton-Hooke symmetry, represented by the
isometries of the metric [4,2].

But the metric (3) is just one example of a “Bargmann” space-
time, whose characteristic feature is that it carries a covariantly
constant lightlike vector [4]. More generally, the metric can also
accommodate a vector potential [6]: the projections of the null
geodesics of

. -\ 2 .
ds? =dx? + 2dt (ds—i— %A(x) ~dx> - HeU(x) dt? (4)

satisfy the usual [Lorentz] equations of motion of a non-relativistic
particle in a (static) “electromagnetic” field B=VxA, E=-VU.

A remarkable feature is that, in the plane, the isotropic os-
cillator metric (2) with U = J»?X? is indeed equivalent to the
“magnetic” metric (4) with vector potential A; = —ge,-jxj , used to
describe the motion in a uniform magnetic field B perpendicular
to the plane.? Switching to a rotating frame,

S X1 - cos2t sinf2t) [ «! eB
(X2> BX <—sm[2t coth) (xz ’ ~om’
(5)
completed with T =t and S =s, carries the magnetic metric into
that of the oscillator. (This is just the familiar Larmor trick in a
new guise.) N particles in the plane with electric charges eq are
described by adding to the metric (3) 2dt Za(ea/m)Aa -dx4, where
Al = —(B/2)€! jx}.

The generalization to N particles being straightforward, we re-
strict ourselves henceforth to two charged planar particles in a
constant magnetic field. With the same choice of gauge for A as
above, we hence consider the (2 x 2+ 1+ 1 = 6)-dimensional met-
ric

Mg €q

a

2V
(xZdx} — x dx2) dt — - dt®, (6)
where we have included an interaction potential V = V (|X; — Xp|)
and dropped the external trapping potential U for simplicity. Then,
applying (5) to each vector X, (a =1, 2) yields

my - 2V $2 3
}a —LdX} +2dTdS - —dT? + = §a [(me2 — eaB)X3]dT?
1
+— Ea [(2ma$2 — eqB)(Xq dX7 — Xz dXg)]dT.

Our clue is now that if the particles have the same charge to mass ra-
tios, (1), then, choosing the rotation frequency as 2 = €BB/2 carries
the constant-magnetic-field-metric, (6), into

2
Mg =5 2 (w 5o 2
—dX2+2dTdS — — | — mgX V )dT~,

BZ
2 2
W =€"—, 7
: (7)

which is the metric for an anisotropic oscillator in d =2+ 2 dimen-
sions, augmented with the potential V.3 The two-particle metric
(7) plainly decomposes into center-of-mass and relative coordi-

nates. Putting
N mi X1 +myXo mlm
Xg= ———— =72 v

m

, Y= (X1 — X2) (8)

2 For simplicity, we took B(t) = B = const and work in the plane.
3 The relation of the (non-commutative) Landau problem with an anisotropic har-
monic oscillator has also been studied [7].

and calling V (|Y|m2(mym2)~"/2) again V(|Y]) with some abuse of
notations (7) is indeed written as

(dX3 — 2R3 dT?) + {dw _ (w 2y w> de}
+2dTdsS. ©)

The first curly bracket here clearly describes the center-of-mass
which behaves as a planar particle of mass m in an attractive
oscillator field, to which the “internal vector” Y adds two more
dimensions, interpreted as an “internal oscillator” with an inter-
action potential. Note that the “external” and “internal” oscillators
have identical frequencies w and also that the anisotropic oscilla-
tor became isotropic when expressed in the new coordinates. The
null geodesics of the metric (9) project to the decoupled system of
planar oscillators

d?Xo + R0, d2y
WX —
dar? 0= dr?

The center-of-mass, X, performs an elliptic “deferent” motion
around the origin, to which Y adds an “epicycle” with the same
oscillator frequency, plus some internal interaction. Transforming
back to the magnetic background, we have

1-
+w?Y + — vyv_o (10)

) o i} o -
{d¥5 + €B(Ro x dXo) dt} + idyz +€B(y x dy)dt —2% dtz}

+2dtds, (

i _ l]] "i_
Xg = —2we"xy, y =

11)
Jsi

—2we; ! — 9,1V, (12)

where Xg = Rglf( is the magnetic center-of-mass and y = Rgl Y is

the internal coordinate.

The decomposition (9) [or (10)] allows us to infer that the
system admits two independent and separately conserved angular mo-
menta, since one can consider independent external and internal ro-
tations,
;(O—)Rexty(o, ?—)?, Lozmi(xf(, (13)
5(0_> 5(0’ Y — Rint?, Lint:m? X ?,
where Rjnp and Ry are planar rotation matrices. The first rotation
corresponds to rotating the center of mass alone, and the second
corresponds to rotating it around its center of mass. The (separate)
conservations of the two angular momenta can be checked directly

using the equations of motion (10) or (12).

3. Mapping to an isolated system and hidden Schrodinger
symmetry

Another remarkable feature of the metric (2) [with X~ X,
t~» T] is that, in the quadratic case 2U = +w?X? and for uniform
B = B(t), it is conformally flat [4,6]. For B = const, lifting Niederer’s
transformation [9] to Bargmann space according to

-

X tanwT
=, T =
coswT )

[T

@ -
, XY=s-— Ex2 tanwT  (14)

maps in fact each half-period of the oscillator conformally into the
free metric [9], 52 +2dt dX = cos 2 wT(dX2+2dT dS —2U dT?).
Generalizing (14), we observe that

-

Xa tanwT
a= T =

coswT’ w

w Mg <5
Y=5s—— — X JtanwT 15
2(;,,1 ) (15)

)

’



Download English Version:

https://daneshyari.com/en/article/8191842

Download Persian Version:

https://daneshyari.com/article/8191842

Daneshyari.com


https://daneshyari.com/en/article/8191842
https://daneshyari.com/article/8191842
https://daneshyari.com/

