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The Modified Chaplygin Gas (MCG) model belongs to the class of a unified models of dark energy (DE)
and dark matter (DM). It is characterized by an equation of state (EoS) pc = Bρ − A/ρα , where the
case B = 0 corresponds to the Generalized Chaplygin Gas (GCG) model. Using a perturbative analysis and
power spectrum observational data we show that the MCG model is not a successful candidate for the
cosmic medium unless B = 0. In this case, it reduces to the usual GCG model.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The cross of different observational results at cosmological level
indicates that besides the usual expected contents of the cosmic
budget, like baryons and radiation, there is a dark sector, with
two components, dark matter and dark energy. In principle, dark
matter is present in local structures like galaxies and cluster of
galaxies, suffering consequently the process of gravitational col-
lapse. In this sense, dark matter behaves much as like ordinary
matter. However, it does emit any kind of electromagnetic radia-
tion. Dark energy, on the other hand, seems to remain a smooth,
not clustered, component, driving the accelerated expansion of the
universe. This property requires a negative pressure. Many differ-
ent models have been evoked to describe this dark sector of the
energy content of the universe, going from the inclusion of exotic
components in the context of general relativity theory to modifica-
tions of the gravitational theory itself, passing by other possibilities
as the breakdown of the homogeneity condition. For a recent re-
view, see Ref. [1].

A very appealing proposal to describe the dark sector are the
so-called unified models. The prototype of such model is the Chap-
lygin gas [2–4]. In the unified model dark matter and dark energy
are described by a single fluid, which behaves as ordinary matter
in the past, and as a cosmological constant term in the future. In
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this sense, it interpolates the different periods of evolution of the
universe, including the present stage of accelerated expansion. The
Chaplygin gas model leads to very good results when confronted
with the observational data of supernova type Ia [5]. Concerning
the matter power spectrum data, the statistic analysis leads to re-
sults competitive with the �CDM model, but the unified (called
quartessence) scenario must be imposed from the beginning [6,7].
This means that the only pressureless component admitted is the
usual baryonic one, otherwise there is a conflict between the con-
straints obtained from the matter power spectrum and the super-
nova tests.

Many variations of the Chaplygin gas model have been pro-
posed in the literature. One of them is the Modified Chaplygin Gas
(MCG) Model. The equation of state of the MCGM is

pc = Bρ − Aρ−α, (1)

where B , A and α are constants. When B = 0 we recover the Gen-
eralized Chaplygin Gas (GCG) Model, and if in addition α = 1 we
have the original Chaplygin gas model. The dynamics of the MCG
model has been studied in Ref. [8], while a dynamical system anal-
ysis has been made in Ref. [9]. The evolution of the temperature
function has been considered in Ref. [10]. Some background con-
straints were established in Refs. [11] and [12]. The analysis of
the spherical collapse was made in Ref. [13], while a perturbative
study, looking for some general features of the model, was car-
ried out in Ref. [14]. In all these studies the viability of the model
was concluded, but no one of them has exploited the observational
data concerning the perturbative behavior of the model.
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Our intention here is to test the MCG model against the power
spectrum observational data. For the background tests, as those an-
alyzed in Refs. [11,12], the MCG reveals to lead to competitive sce-
narios compared with the �CDM and the GCG models (to give just
some examples). However, the constraints coming from the power
spectrum data are, in general, much more crucial since it tests not
only the background framework, but also the perturbative behav-
ior of the model. Many general constraints can be established on
the parameters of the EoS (1) even not considering perturbations.
For example, in the past the equation of state (1) implies, when α
is positive (a requirement necessary in a perturbative analysis in
order to preserve a positive sound speed) that

ρc(a ≈ 0) = cte

a3(1+B)
. (2)

In order not to spoil the usual primordial scenario of the standard
model (in special nucleosynthesis), B must be smaller than 1/3,
which may include negative values. On the other hand, as we will
show below, the requirement that the sound speed of the MCG
must be positive implies essentially that B > 0. Hence, the admis-
sible values of the parameter B seems to be around 0 < B < 1/3.
These considerations will be strengthened through the power spec-
trum analysis to be made later in this Letter: the matter power
spectrum data can be fitted only if |B| < 10−6. Hence, essentially
the only configuration possible is that corresponding to the gener-
alized Chaplygin gas, with perhaps some possible very small devia-
tions from it. In this sense, we can consider that the MCG model is
ruled out when confronted with the power spectrum observational
data.

In next section we set out the general equations of the MCG
model at background and perturbative levels. In Section 3 we per-
form a numerical analysis comparing the theoretical results with
the matter power spectrum observational data. In Section 4 we
present our conclusions.

2. Basic set of equations

Our starting point are Einstein’s equations coupled to a pres-
sureless fluid, radiation and to the MCG fluid. They read,

Rμν = 8πG

{
T m
μν − 1

2
gμν T m

}
+ 8πG

{
T r
μν − 1

2
gμν T r

}

+ 8πG

{
T c
μν − 1

2
gμν T c

}
,

T μν
m;μ = 0, T μν

c;μ = 0, T μν
r;μ = 0.

The superscripts (subscripts) m, r and c stand for “matter”, “radia-
tion” and “Chaplygin”. We assume a perfect fluid structure for the
cosmic medium as a whole and also for each of the components,

T μν
A = (ρA + p A)uμ

A uν
A − p A gμν, A = m, c, r. (3)

Note that for “matter” component we understand a pressureless
fluid that, in principle, may include baryons and dark matter. This
questions will be discussed later. Using now the flat Friedman–
Robertson–Walker metric (as suggested by the Seven-year WMAP
data [15]),

ds2 = dt2 − a(t)2[dx2 + dy2 + dz2],
and identifying all the background 4-velocities, Einstein’s equations
reduce to
(

ȧ

a

)2

= 8πG

3
ρm + 8πG

3
ρr + 8πG

3
ρc, (4)

2
ä

a
+

(
ȧ

a

)2

= −8πG(pc + pr), (5)

ρ̇m + 3
ȧ

a
ρm = 0 ⇒ ρm = ρm0/a3, (6)

ρ̇r + 4
ȧ

a
ρr = 0 ⇒ ρr = ρr0/a4, (7)

ρ̇c + 3
ȧ

a
(ρc + pc) = 0

(
pc = Bρc − A/ρα

c

)

⇒ ρc =
{

As + 1 − As

a3(1+α)(1+B)

}1/(1+α)

. (8)

In the above set of equations we have defined As = A
(1+B)ρ1+α

c0
.

The perturbed equations in the synchronous coordinate condi-
tion can be established following closely the computation shown in
Ref. [7]. We introduce fluctuations around the background quanti-
ties, gμν = ḡμν +hμν , ρ = ρ̄ + δρ , p = p̄ + δp, uμ = ūμ + δuμ . The
bars indicate the background quantities. The synchronous coordi-
nate condition implies hμ0 = 0 and δu0 = 0. The final perturbed
equations read (see also [16]),

ḧ

2
+ ȧ

a
ḣ − 4πG(δρ + 3δp) = 0, (9)

δ̇ρ + 3ȧ

a
(δρ + δp) + (ρ + p)

(
θ − ḣ

2

)
= 0, (10)

(p + ρ)θ̇ +
[
(ρ̇ + ṗ) + 5ȧ

a
(ρ + p)

]
θ + ∇2δp

a2
= 0, (11)

where ρ and p stand for the total matter and pressure, respec-
tively, θ = δui

,i and h = hkk/a2.
In terms of the components, we end up with the following

equations:

ḧ

2
+ ȧ

a
ḣ − 4πG

[
δρm + δρc + δρr + 3(δpm + δpc + δpr)

] = 0,

(12)

δρ̇m + 3ȧ

a
(δρm + δpm) + (ρm + pm)

(
θm − ḣ

2

)
= 0, (13)

(ρm + pm)θ̇m +
[
(ρ̇m + ṗm) + 5ȧ

a
(ρm + pm)

]
θm + ∇2δpm

a2
= 0,

(14)

δρ̇c + 3ȧ

a
(δρc + δpc) + (ρc + pc)

(
θc − ḣ

2

)
= 0, (15)

(ρc + pc)θ̇c +
[
(ρ̇c + ṗc) + 5ȧ

a
(ρc + pc)

]
θc + ∇2δpc

a2
= 0, (16)

δρ̇r + 3ȧ

a
(δρr + δpr) + (ρr + pr)

(
θr − ḣ

2

)
= 0, (17)

(ρr + pr)θ̇r +
[
(ρ̇r + ṗr) + 5ȧ

a
(ρr + pr)

]
θr + ∇2δpr

a2
= 0, (18)

with θm = δui
m,i , θc = δui

c,i and θr = δui
r,i .

With the definitions

Ωc(a) = Ωc0

(
As + 1 − As

a3(1+α)(1+B)

) 1
1+α

, (19)

w(a) = pc

ρc
= B − As(1 + B)

As + (1 − As)a−3(1+α)(1+B)
, (20)

v2
s (a) = B + αAs(1 + B)

As + (1 − As)a−3(1+α)(1+B)
, (21)
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