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We investigate chemical-potential (μ) and temperature (T ) dependence of scalar and pseudo-scalar
meson masses for both real and imaginary μ, using the Polyakov-loop extended Nambu–Jona-Lasinio
(PNJL) model with three-flavor quarks. A three-flavor phase diagram is drawn in μ2–T plane where
positive (negative) μ2 corresponds to positive (imaginary) μ. A critical surface is plotted as a function of
light- and strange-quark current mass and μ2. We show that μ-dependence of the six-quark Kobayashi–
Maskawa–’t Hooft (KMT) determinant interaction originated in UA(1) anomaly can be determined from
lattice QCD data on η′ meson mass around μ = 0 and μ = iπ T /3 with T slightly above the critical
temperature at μ = 0 where the chiral symmetry is restored at μ = 0 but broken at μ = iπ T /3, if it is
measured in future.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In recent theoretical studies, novel scenarios for QCD phase
structure at finite real chemical potential (μR) are suggested; for
example, the quarkyonic phase [1–4], the multi critical-endpoint
generation [5–8] and the Lifshitz-point induced by the inhomoge-
neous phase [9]. Thus, qualitative or speculative investigation of QCD
phase diagram is progressing well.

Nevertheless, quantitative or more conclusive understanding of
QCD phase diagram is quite poor. The principal reason is the sign
problem in the first-principle lattice QCD (LQCD) simulation at fi-
nite μR. Several methods such as the reweighting method [10],
the Taylor expansion method [11], the analytic continuation from
imaginary chemical potential μI to μR [12–14] and so on were
proposed so far to circumvent the sign problem. However, they do
not reach the μR/T � 1 region yet, where T is temperature. For
this reason, effective models such as the Nambu–Jona-Lasinio (NJL)
model were used so far to investigate qualitative properties of the
phase structure at finite μR.

The effective-model approach, however, is ambiguous particu-
larly in determining the interaction part. For example, the six-
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quark Kobayashi–Maskawa–’t Hooft (KMT) determinant interac-
tion [15,16] is necessary to introduce UA(1) anomaly into the
effective model, but the strength G D of the KMT interaction is
not well determined. Very recently, it has been pointed out in
Ref. [17] that the strength G D may have μR dependence through
the suppression of instanton density due to Debye screening. If G D

has such a μR dependence, the phase diagram will be changed
largely [17].

Thus, a new approach should be proposed for quantitative or
more reliable investigation of QCD phase diagram at finite μR. As
a possible answer, recently, we proposed the imaginary chemical
potential matching approach (the μI-matching approach) [18,19]. In
this approach, interactions of the effective model are determined
from LQCD data at finite μI where no sign problem comes out.
After the determination, a phase structure at finite μR is pre-
dicted with the effective model. The most important point in this
approach is whether the model taken can reproduce the Roberge–
Weiss (RW) periodicity and the RW transition at finite μI [20]. In
our previous works [18], we showed that the Polyakov-loop ex-
tended Nambu–Jona-Lasinio (PNJL) model [21] can do it, because
the thermodynamical potential of the PNJL model is invariant un-
der the extended Z3 transformation,

e±iθ → e±iθ e±i 2πk
3 ,

Φ(θ) → Φ(θ)e−i 2πk
3 , Φ̄(θ) → Φ̄(θ)ei 2πk

3 , (1)
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where the chemical potential μ is given by μ = iμI = iθT . Here,
Φ and Φ̄ denote the Polyakov-loop and its conjugate, respectively.
This symmetry ensures the RW periodicity. Since, the PNJL model
is designed to treat the confinement mechanism approximately in
addition to the chiral symmetry breaking, we can investigate not
only the chiral transition but also the deconfinement transition
with the PNJL model. We also showed by using the PNJL model
that the crossover deconfinement transition that takes place at fi-
nite θ becomes stronger as θ increases and eventually at θ = π/3
it changes into the RW phase transition [18].

The UA(1) anomaly is related to instantons. The anomaly can
be taken into account in the NJL and PNJL models. In the three-
flavor case, it is described by the effective six-quark KMT determi-
nant interaction [15,16], as mentioned above. The UA(1) anomaly
restoration at finite T is investigated in the case of μ = 0 by the
NJL model [22] that can reproduce LQCD data [23]. For the case of
finite μR, the μ dependence of the anomaly restoration strongly
depends on that of the coupling constant G D of the KMT deter-
minant interaction [17], if G D has the μ dependence. However,
the μ dependence of G D is unclear because LQCD data is not fea-
sible at finite μR and also theoretical understanding on the μ
dependence of the instanton density is not sufficient. Therefore,
the phase structure in the three-flavor system is more ambiguous
than in the two-flavor system.

Recently, scalar and pseudo-scalar meson masses are investi-
gated in the μR region by the PNJL model with three-flavor quarks;
for example, see [24,25]. In this Letter, we investigate scalar and
pseudo-scalar meson masses in both the μR and the μI region,
using the three-flavor PNJL model. We show η′ meson mass is
sensitive to G D particularly near θ = π/3. This means that the θ

dependence of η′ meson mass is a good quantity to determine μ
dependence of G D . At the present stage, there is no reliable LQCD
data particular on meson masses for the case of finite μI . There-
fore, our investigation is limited to only a qualitative level.

2. Three-flavor PNJL model

Lagrangian density of the three-flavor PNJL model is

LPNJL = q̄
(
iγν Dν − m̂0

)
q + G S

8∑
a=0

[
(q̄λaq)2 + (q̄iγ5λaq)2]

− G D

[
det

i j
q̄i(1 + γ5)q j + det

i j
q̄i(1 − γ5)q j

]
− U

(
Φ[A], Φ̄[A], T

)
, (2)

where Dν = ∂ν + i Aν = ∂ν + iδν
0 g A0

aλa/2 with the gauge cou-
pling g and the Gell-Mann matrices λa . Three-flavor quark fields
q = (qu,qd,qs) have current quark masses m̂0 = diag(mu,md,ms).
The Polyakov-loop potential U is defined later in (7) and (8). In
the interaction part, G S and G D denote coupling constants of the
scalar-type four-quark and the KMT determinant interaction, re-
spectively. The determinant deti j runs in the flavor space and then
the KMT determinant interaction breaks the UA(1) symmetry ex-
plicitly.

In the PNJL model, the gauge field Aμ is treated as a homo-
geneous and static background field. The Polyakov-loop Φ and its
conjugate Φ̄ are given by

Φ = 1

3
trc(L), Φ̄ = 1

3
trc(L̄) (3)

where L = exp(i A4/T ) with A4 = i A0 in Euclidean space. In the
Polyakov-gauge, A4 is diagonal in the color space.

We make the mean field approximation (MFA) to the quark–
antiquark interactions in (2) in the following way. In (2), the oper-

Table 1
Summary of the parameter set in the NJL sector [26].

ml (MeV) ms (MeV) Λ (MeV) G S Λ2 G D (0)Λ5

5.5 140.7 602.3 1.835 −12.36

ator product q̄iq j is first divided into q̄iq j = σi j + (q̄iq j)
′ with the

mean field (the chiral condensate) σi j ≡ 〈q̄iq j〉 and the fluctuation
(q̄iq j)

′ where i, j = u,d, s. Ignoring higher-order terms of (q̄iq j)
′

in the rewritten Lagrangian and re-substituting (q̄iq j)
′ = q̄iq j − σi j

into the approximated Lagrangian, one can obtain a linearized La-
grangian based on MFA:

LMFA
PNJL = q̄i

(
iγν∂ν + iγ0 A4 − Mii

)
qi

−
( ∑

i=u,d,s

2G Sσ
2
ii − 4G Dσuuσddσss

)

− U
(
Φ[A], Φ̄[A], T

)
, (4)

where the dynamical quark mass Mii is defined by Mii = mi −
4G Sσii + 2G Dσ j jσkk with i �= j �= k.

In this study, we impose the isospin symmetry for u–d sector
and then we use ml = mu = md . The thermodynamical potential
becomes

ΩPNJL = −2
∑

f =u,d,s

∫
d3 p

(2π)3

[
Nc E p, f

+ 1

β
ln

[
1 + 3

(
Φ + Φ̄e−β(E p, f −μ f )

)
e−β(E p, f −μ f )

+ e−3β(E p, f −μ f )
]

+ 1

β
ln

[
1 + 3

(
Φ̄ + Φe−β(E p, f +μ f )

)
e−β(E p, f +μ f )

+ e−3β(E p, f +μ f )
]]

+
( ∑

i=u,d,s

2G Sσ
2
ii − 4G Dσuuσddσss

)

+ U
(
Φ[A], Φ̄[A], T

)
. (5)

We take the three-dimensional momentum cutoff,

∫
d3 p

(2π)3
→ 1

2π2

Λ∫
0

dp p2, (6)

because this model is non-renormalizable. Hence, the present
model has five parameters G S , G D , ml , ms and Λ.

We use the parameter set of Ref. [26]; the parameters are de-
termined to fit empirical values on meson masses of π , K and η′
and the pion decay constant, while ml is fixed at 5.5 MeV. The
parameter set thus determined is shown in Table 1.

We also use U of Ref. [27] that is fitted to LQCD data in the
pure gauge limit at finite T [28,29]:

U
T 4

= −b2(T )

2
Φ̄Φ − b3

6

(
Φ̄3 + Φ3) + b4

4
(Φ̄Φ)2, (7)

b2(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

. (8)

We take the original value 270 MeV for T0; see Table 2 for
other parameters.
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