
Physics Letters B 695 (2011) 219–224

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Higgs boson mass bounds in seesaw extended standard model with non-minimal
gravitational coupling

Bin He a,∗, Nobuchika Okada b, Qaisar Shafi a

a Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
b Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 September 2010
Received in revised form 27 October 2010
Accepted 29 October 2010
Available online 12 November 2010
Editor: M. Cvetič
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In the presence of non-minimal gravitational coupling ξ H† H R between the standard model (SM) Higgs
doublet H and the curvature scalar R, the effective ultraviolet cutoff scale is given by Λ ≈ mP /ξ ,
where mP is the reduced Planck mass, and ξ � 1 is a dimensionless coupling constant. In type I and
type III seesaw extended SM, which can naturally explain the observed solar and atmospheric neutrino
oscillations, we investigate the implications of this non-minimal gravitational coupling for the SM Higgs
boson mass bounds based on vacuum stability and perturbativity arguments. A lower bound on the Higgs
boson mass close to 120 GeV is realized with type III seesaw and ξ ∼ 10–103.

© 2010 Elsevier B.V. All rights reserved.

The search for the SM Higgs boson is arguably the single most
important mission of the LHC. According to precision electroweak
data and the direct lower mass bound from LEP II, a Higgs boson
mass in the range of 114.4 GeV � mH � 180 GeV [1] is favored. If
one takes the reduced Planck mass mP = 2.4×1018 GeV as a natu-
ral cutoff scale of the SM, theoretical considerations based on vac-
uum stability and perturbativity arguments narrow the SM Higgs
boson mass bounds somewhat, namely 128 GeV � mH � 175 GeV
[2,3]. Very recently, it has been reported [4] that the SM Higgs bo-
son mass in the mass range 158 GeV � mH � 175 GeV is excluded
at 95% C.L. by the direct searches at the Tevatron.

Clearly, if there exists some new physics beyond the SM be-
tween the electroweak scale and the reduced Planck scale, it can
affect these theoretical Higgs boson mass bounds. The seesaw
mechanism is a simple and promising extension of the SM to in-
corporate the neutrino masses and mixings observed in solar and
atmospheric neutrino oscillations. There are three main seesaw ex-
tensions of the SM, type I [5], type II [6], and type III [7], in
which new particles, singlet right-handed neutrinos, SU(2) triplet
scalar, and SU(2) triplet right-handed neutrinos, respectively, are
introduced. These new particles contribute to the renormaliza-
tion group equations (RGEs) at energies higher than the seesaw
scale and as a result, the Higgs boson mass bounds can be sig-
nificantly altered. The important implications of seesaw models on
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the Higgs boson mass bounds have been investigated with the re-
duced Planck mass cutoff for the various seesaw models, type I
[8,9], type II [10] and type III [9].

In general, the non-minimal gravitational coupling between the
SM Higgs doublet and the curvature scalar,

ξ H† H R, (1)

can be introduced in the SM. This coupling opens up a very in-
triguing scenario for inflationary cosmology, namely, the possibility
that the SM Higgs field may play the role of inflation field, and this
has been investigated in several recent papers [11–17]. As pointed
out in [18], in the presence of the non-minimal gravitational cou-
pling, it is natural to identify the effective ultraviolet cutoff scale as

Λ ≈ mP

ξ
, (2)

for ξ � 1, rather than mP . Note that the cutoff may depend on
the background field value which in our case is of order the elec-
troweak scale (see last refs. in [11] and [17]).

In this Letter, we extend previous work on the Higgs boson
mass bounds in type I and III seesaw extended SM [8,9] to the
case with non-minimal gravitational coupling. The ultraviolet cut-
off scale is taken to be Λ = mP /ξ in our analysis. We will show
that the gravitational coupling as well as type I and III seesaw ef-
fects can dramatically alter the vacuum stability and perturbativity
bounds on the SM Higgs boson mass. In particular, the vacuum sta-
bility bound on the Higgs boson mass can be lowered to 120 GeV
or so, significantly below the usual lower bound of about 128 GeV
found in the absence of seesaw and with ξ = 0.
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In type I seesaw, three generations of SM-singlet right-handed
neutrinos ψi (i = 1,2,3) are introduced. The relevant terms in the
Lagrangian are given by

L ⊃ −yij�iψ j H − MRψc
i ψi, (3)

where �i is the i-th generation SM lepton doublet. For simplic-
ity, we assume in this Letter that the three right-handed neutrinos
are degenerate in mass (MR ). At energies below MR , the heavy
right-handed neutrinos are integrated out and the effective dimen-
sion five operator is generated by the seesaw mechanism. After
electroweak symmetry breaking, the light neutrino mass matrix is
obtained as

Mν = v2

2MR
YT

ν Yν, (4)

where v = 246 GeV is the VEV of the Higgs doublet, and Yν = yij
is a 3 × 3 Yukawa matrix.

The basic structure of type III seesaw is similar to type I seesaw,
except that instead of the singlet right-handed neutrinos, three
generations of fermions which transforms as (3,0) under the elec-
troweak gauge group SU(2)L × U(1)Y are introduced:

ψi =
∑

a

σ a

2
ψa

i = 1

2

(
ψ0

i

√
2ψ+

i√
2ψ−

i −ψ0
i

)
. (5)

With canonically normalized kinetic terms for the triplet fermions,
we replace the SM-singlet right-handed neutrinos of type I seesaw
in Eq. (3) by these SU(2) triplet fermions. Assuming degenerate
masses (MR ) for the three triplet fermions, the light neutrino mass
matrix via type III seesaw mechanism is obtained as

Mν = v2

8MR
YT

ν Yν . (6)

For a renormalization scale μ < MR , the heavy fermions are de-
coupled, and there is no effect on the RGEs for the SM couplings.
However, in the presence of the non-minimal gravitational cou-
pling, a factor s(μ) defined as

s(μ) =
1 + ξμ2

m2
P

1 + (6ξ + 1)
ξμ2

m2
P

, (7)

is assigned to each term in the RGEs associated with the physical
Higgs boson loop corrections [11,12,15]. In our analysis, we em-
ploy 2-loop RGEs for the SM couplings. Since the SM beta functions
suitably modified with the s-factor are known only at 1-loop level,
we employ the beta functions with the s-factor for 1-loop correc-
tions, while the beta functions for 2-loop corrections are without
the s-factor. We have checked that the effects of the s-factor in
beta functions for 2-loop corrections are negligible as far as our fi-
nal results are concerned [13]. In fact, even for 1-loop corrections,
the effects of the s-factor are not so important, namely, negligi-
ble for the perturbative bound, while the perturbative bound is
reduced by, at most, a few GeV.

For the three SM gauge couplings with a renormalization scale
μ < MR , we have

dgi

d lnμ
= bi

16π2
g3

i + g3
i

(16π2)2

(
3∑

j=1

Bij g2
j − Ci y2

t

)
, (8)

where gi (i = 1,2,3) are the SM gauge couplings,

bi =
(
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,−7

)
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)
, (9)

and we have included the contribution from the top Yukawa cou-
pling (yt ). We use the top quark pole mass Mt = 173.1 GeV and
the strong coupling constant at the Z-pole (M Z ) αS = 0.1193 [19].
For the top Yukawa coupling, we have

dyt

d lnμ
= yt

(
1

16π2
β

(1)
t + 1

(16π2)2
β

(2)
t

)
. (10)

Here the one-loop contribution is

β
(1)
t =

(
4 + s

2

)
y2

t −
(

17

20
g2

1 + 9

4
g2

2 + 8g2
3

)
, (11)

while the two-loop contribution is given by [20]

β
(2)
t = −12y4
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(
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80
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1 + 225

16
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3
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t

+ 1187
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t . (12)

In solving the RGE for the top Yukawa coupling, its value at μ = Mt

is determined from the relation between the pole mass and the
running Yukawa coupling [21,22],

Mt � mt(Mt)

(
1 + 4

3

α3(Mt)

π

+ 11

(
α3(Mt)

π

)2

−
(

mt(Mt)

2π v

)2)
, (13)

with yt(Mt) = √
2mt(Mt)/v , where v = 246 GeV. Here, the second

and third terms in parenthesis correspond to one- and two-loop
QCD corrections, respectively, while the fourth term comes from
the electroweak corrections at one-loop level.

The RGE for the Higgs quartic coupling is given by [20],

dλ

d lnμ
= 1
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β
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λ , (14)

with
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and
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