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In this Letter we study the radiation measured by an accelerated detector, coupled to a scalar field,
in the presence of a fundamental minimal length. The latter is implemented by means of a modified
momentum space Green’s function. After calibrating the detector, we find that the net flux of field quanta
is negligible, and that there is no Planckian spectrum. We discuss possible interpretations of this result,
and we comment on experimental implications in heavy ion collisions and atomic systems.
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The emergence of a minimal length in a quantum spacetime
is an old idea, dating back to the early times of Quantum Grav-
ity [1]. In most cases, it turns out to be the crucial signature in
every phenomenon that takes place on a background that departs
from a purely classical description. In this general framework, the
study of the Unruh effect in the presence of a minimal length
can lead both to profound insights and simple phenomenological
predictions. In fact, acceleration radiation has a prominent role in
a variety of physical contexts: beyond the theoretical case of an
accelerated detector, the Unruh radiation might affect the trans-
verse polarization of electrons and positrons in particle storage
rings (Sokolov–Ternov effect) [2,3], and the onset of the Quark
Gluon Plasma (QGP) due to heavy ions collisions [4]. The Unruh
effect might have non-negligible imprints in low energy physics
too, such as the dynamics of electrons in Penning traps, of atoms
in microwave cavities, and of ultraintense lasers (for a review see
Ref. [5] and references therein). Finally, its companion effect, i.e.
the Hawking radiation, is extensively investigated in analog mod-
els of gravity, such as Bose–Einstein condensates (BEC) [6–8].

The presence of a minimal length � is testable only if one can
perform experiments at energies around the scale M∗ = 1/�. How-
ever, we recall that low energy systems are also endowed with
relevant microscopic scales whose global effects, though impor-
tant, cannot be described by the larger scale effective models often
in use. On the other hand, fine tuning experiments in condensed
matter systems and very high energy particle collisions are now
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in progress and could reveal key information about the interplay
between the Unruh effect and the existence of a coarse-grained
background in the system [9]. It is therefore imperative to have an
accurate description of the acceleration radiation in the presence
of a minimal length.

The energy scale associated with a minimal length is typically
seen as the frontier beyond which local Lorentz symmetry is vio-
lated, and it is usually set to be of the order of the Planck mass,
as in the vector–tensor theories of gravitation [10]. In other cases,
such as in analog models in BEC [6,7], this energy scale is much
smaller. In both contexts the violation appears as a modification
of the dispersion relation. This possibility was widely studied in
relation to the transplanckian problem in cosmology (see e.g. [11,
12]), and to the robustness of both Hawking emission [13,14] and
Unruh effect [15]. The lesson learnt from these works is that the
minimal length associated with modified dispersion relations has
a negligible impact on these phenomena.

The acceleration radiation was also studied in the case when
the minimal length is introduced to cure the divergent ultraviolet
(UV) behaviour of the field theory. For example, in [16] the propa-
gator is modified via path integral duality, and it is finite in the UV
regime. In [17,18], the same propagator is found by deforming the
action of the Lorentz group. As for modified dispersion relations,
the effect on both the Unruh effect [17–19] and on the Hawking
radiation [20] is negligible.

Lorentz-violating models are increasingly disfavored by obser-
vations, see e.g. [21]. Therefore, it seems more sensible to imple-
ment a Lorentz invariant length � in the theory. In the following,
we do not assume any particular value for �, which presumably
depends on the details of the underlying quantum gravitational
theory. A natural choice would be a value of the order of the
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Planck length (10−35 m), which could be larger in the presence
of extra-dimensions, as discussed at the end of the Letter.

With this spirit in mind, in this Letter we assume that the Eu-
clidean momentum space propagator is given by [22–24]

G�

(
p2) = e−�2 p2/2

p2 + m2
, (1)

where p2 = p2
0 + |�p|2. A similar propagator was already success-

fully employed in the context of both black hole physics [25–30]
(for a review see Ref. [31] and further references therein), and of
inflationary cosmology [32]. The main result is that the divergent
short distance behavior of the conventional solutions to field equa-
tions (including the ones on curved spacetimes) is cured while, as
expected, the quantum fluctuations of the manifold do not occur
at scales larger than �, where the classical description of grav-
ity efficiently works. In particular, the divergent behavior of the
black hole evaporation in the Planck phase has been regularized.
In the new scenario, the terminal stage of the Hawking quantum
emission is in fact characterized by a thermodynamically stable
(positive heat capacity) phase of cooling of the black hole, often
called the “SCRAM phase” [33,34].

We begin our discussion by briefly recalling the main features
of the Unruh effect, as presented in Ref. [35]. We consider a de-
tector, moving in a flat background spacetime along a trajectory
xα(τ ), where τ is the detector proper time. We assume that the
detector moves through a region permeated by a quantum scalar
field φ, and that the interaction between the two can be described
in terms of the Lagrangian Lint = γ μ(τ )φ[xα(τ )], where γ is a
small coupling constant and μ is the detector monopole momen-
tum operator. Due to the interaction with the field, the detector
will undergo a transition from the ground state E0 to an excited
state E > E0. As γ is small, we can derive the transition probabil-
ity Γ = ∫

dE|Ψ |2 by squaring the first order amplitude

Ψ = i〈E;ψ |
∞∫

−∞
Lint dτ |0M; E0〉, (2)

where |0M〉 is the Minkowski vacuum, and |ψ〉 is the field ex-
cited state. At the lowest order, the monopole operator is well
approximated by μ(τ) = eiH0τμ(0)e−iH0τ , hence we can separate
the contributions of the detector and the field to the amplitude by
writing

Ψ = iγ 〈E|μ(0)|E0〉
∞∫

−∞
dτei
Eτ 〈ψ |φ(x)|0M〉, (3)

where 
E = E − E0. From this one sees that, at first order, the
state |ψ〉 can only contain a single field quantum. However, to find
the transition probability, we need to take in account transitions
to all possible energies, thus

Γ = γ 2
∑

E

∣∣〈E|μ(0)|E0〉
∣∣2 F (
E), (4)

where the detector response function F (
E) is given by

F (
E) =
∞∫

−∞
dτ

∞∫
−∞

dτ ′e−i
τ
E G+(
x(τ ), x

(
τ ′)). (5)

Here, 
τ = τ − τ ′ , and G+ is the positive frequency Wightman–
Green function. We stress that the response function is fully speci-
fied in terms of the properties of the field, and it does not depend
on the choice of the detector, whose sensitivity is given only by

S = γ 2 ∑ |〈E|μ(0)|E0〉|2. The double integration in Eq. (5) means
that the flux of particles interacting with the detector diverges as
soon as the detector-field system reaches an equilibrium configu-
ration. Therefore, one usually considers the transition probability
per unit proper time, Γ̇ = S Ḟ , where we define the response rate

Ḟ =
∞∫

−∞
d
τe−i
τ
E G+(
x). (6)

In this expression, 
x2 = ημν(xμ − x′μ)(xν − x′ν) is the Minkowski
proper time interval squared. For an inertial detector moving with
constant velocity v , one has 
x2 = 
τ 2/(1 − v2), and G+(
x) di-
verges when 
τ → 0. However, as no other singularities occur on
the integration path, one can show that Ḟ vanishes by means of
the iε prescription. On the contrary, when the trajectory is not in-
ertial, the Minkowski interval has the form 
x2 = f (
τ), where
f is a non-constant and finite function. Therefore, the integrand
function in (6) exhibits poles corresponding to each zero of f (
τ)

and the rate is no longer vanishing. For example, for a uniformly
accelerated detector, with acceleration 1/α, coupled to a massless
scalar field, one finds a non-vanishing rate Ḟ ∼ exp(−2πα
E).
Thus, we learn that the detector feels an incoming radiation of
quanta, as if it was coupled to a thermal bath at the temperature
T = 1/2παkB [36].

The above calculations can also be performed in Euclidean
space, upon the analytic continuation iτ = τE . Then, the response
rate formula becomes

Ḟ = i

−i∞∫
i∞

d
τE e
τE 
E G+
E (
x), (7)

where G+
E is the Euclidean Wightman function. A detector with

uniform acceleration 1/α on the Euclidean plane typically follows
a circular trajectory of the form α2 sin2(
τE/2α). Below we will
find more convenient to work in Euclidean space, thus we will use
Eq. (7), instead of (6) to calculate the radiation flux.

We now proceed with the implementation of a minimal length
in the framework of the Unruh effect, by adopting the propaga-
tor (1). We see that the minimal length appears in the damping
factor, and this is physically interpreted as a blurring, or delocal-
ization, occurring at each point on a manifold when probed by
high momenta. However, at lower momenta the presence of � is
actually negligible and, usually, one can work with the ordinary
field theory. The Euclidean propagator in coordinate space can be
found by calculating the Fourier transform of the Schwinger repre-
sentation

e−�2 p2/2

p2 + m2
= e�2m2/2

∞∫

�2/2

dse−s(p2+m2). (8)

In the massless case, we find that the modified Euclidean
Wightman–Green function is [40]

G E
� (
x) = − 1

4π2(
�x2 + 
t2
E)

[
1 − e−(
t2

E +
�x2)/2�2]
. (9)

The theory behaves nicely, as G E
� reduces to its conventional form

in the limit � → 0. More importantly, the above function shows its
regularity at coincident points: in the double limit (
tE ,
�x2) →
(0,0) one has G E

� → −1/8π2�2. The same holds for the massive
case, as one can show that, in the coincidence limit,

G E
� ∼ − 1

8π2�2
+ m2em2�2/2 E1

(
m2�2/2

)
, (10)
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