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We study the quasinormal modes of the massless scalar perturbation in the background of a deformed
black hole in the Hořava–Lifshitz gravity with coupling constant λ = 1. Our results show that the
quasinormal frequencies depend on the parameter in the Hořava–Lifshitz gravity and the behavior of
the quasinormal modes is different from those in the Reissner–Norström and Einstein–Born–Infeld black
hole spacetimes. The absolute value of imaginary parts is smaller and the scalar perturbations decay more
slowly in the deformed Hořava–Lifshitz black hole spacetime. This information can help us understand
more about the Hořava–Lifshitz gravity.

© 2010 Elsevier B.V. All rights reserved.

Inspired by the Lifshitz model, Hořava [1] proposed recently a
field theory model for a UV complete theory of gravity, which is a
non-Lorentz invariant theory of gravity in 3 + 1 dimensions. Unlike
Einstein gravity, it is renormalizable by power-counting arguments.
Thus, it is believed widely that it could be a candidate for Ein-
stein’s general relativity. Very recently, the Hořava–Lifshitz gravity
theory has been intensively investigated in [2–11] and its cos-
mological applications have been studied in [12–18]. Some static
spherically symmetric black hole solutions have been found in
Hořava–Lifshitz theory [19–24] and the associated thermodynamic
properties with those black hole solutions have been investigated
in [25–28].

The four-dimensional metric in the ADM formalism can be ex-
pressed as [29]

ds2
ADM = −N2 dt2 + gij

(
dxi − Ni dt

)(
dx j − N j dt

)
(1)

and the Einstein–Hilbert action is given by

SEH = 1

16πG

∫
d4x

√
gN

(
Kij K i j − K 2 + R − 2Λ

)
, (2)

where G is Newton’s constant and Kij is extrinsic curvature which
takes the form

Kij = 1

2N
(∂t gi j − ∇i N j − ∇ j Ni). (3)
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In general, the IR vacuum of this theory is anti de Sitter (AdS)
spacetime. To obtain a Minkowski vacuum in the IR sector, one
can modify the theory by introducing “μ4 R” and then take the
ΛW → 0 limit. This does not change the UV properties of the the-
ory, but it alters the IR properties. The deformed action of the
nonrelativistic renormalizable gravitational theory is given by [20]

SHL =
∫

dt d3x(L0 + L̃1), (4)

L0 = √
gN

{
2

κ2

(
Kij K i j − λK 2) + κ2μ2(ΛW R − 3Λ2

W )

8(1 − 3λ)

}
, (5)

L̃1 = √
gN

{
κ2μ2(1 − 4λ)

32(1 − 3λ)
R2

− κ2

2w4

(
Cij − μw2

2
Rij

)(
C ij − μw2

2
Rij

)
+ μ4 R

}
. (6)

Here Cij is the Cotton tensor, defined by

C ij = ε ik�∇k

(
R j

� − 1

4
Rδ

j
�

)
= ε ik�∇k R j

� − 1

4
ε ikj∂k R. (7)

Comparing the action to that of general relativity in the ADM for-
malism, one can find that the speed of light, Newton’s constant
and the cosmological constant are given by

c = κ2μ

4

√
ΛW

1 − 3λ
, G = κ2

32πc
, Λ = 3

2
ΛW . (8)

Taking Ni = 0, the spherically symmetric solutions could be ob-
tained with the metric ansatz [19,21–27]
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ds2 = −N2(r)dt2 + dr2

f (r)
+ r2(dθ2 + sin2 θ dφ2). (9)

Substituting the metric ansatz (9) into the action, and then varying
the functions N and f , one can find that the reduced Lagrangian
reads

L̃1 = κ2μ2N

8(1 − 3λ)
√

f

(
λ − 1

2
f ′2 − 2λ( f − 1)

r
f ′

+ (2λ − 1)( f − 1)2

r2
− 2w

(
1 − f − r f ′)) (10)

with w = 8μ2(3λ − 1)/κ2. For λ = 1 (w = 16μ2/κ2), we have a
solution where f and N are determined to be

N2 = f = 2(r2 − 2Mr + α)

r2 + 2α + √
r4 + 8αMr

, (11)

where α = 1/(2w) and M is an integration constant related to the
mass. The metric of this black hole looks like that of Gauss–Bonnet
black hole. The event horizons are given by

r± = M ±
√

M2 − α, (12)

and the Hawking temperature is

T H = f ′

4π

∣∣∣∣
r=r+

=
√

M2 − α

π(r2+ + 2α +
√

r4+ + 8αMr+)

. (13)

The thermodynamics of this black hole has been studied in [28,30,
31]. Myung [30] has calculated the ADM mass of this black hole
and find that it is similar to that of four-dimensional Einstein–
Born–Infeld black hole [32]. It is well known that the Born–Infeld
electrodynamics is one of the important nonlinear electromagnetic
theories. As the Born–Infeld scale parameter b tends to zero, the
Einstein–Maxwell theory is recovered and the Einstein–Born–Infeld
black hole is reduced to Reissner–Norström black hole. Applying
such kind of ADM mass proposed in [30], Wang et al. [31] find
that the integral and differential forms of the first law of ther-
modynamics are still valid for the deformed Hořava–Lifshitz black
hole. The potentially observable properties of this black hole were
considered in [33–35]. In this Letter, our main purpose is to study
the quasinormal modes of massless scalar field in this spacetime
and to see what there exists some new feature in the dynamical
evolution of the perturbation in the black hole in Hořava–Lifshitz
theory.

The Klein–Gordon equation for a massless scalar field in this
spacetime is

1√−g
∂μ

(√−g gμν∂ν

)
ψ = 0. (14)

Separating ψ = e−iωt R(r)Ylm(θ,φ)/r, we can obtain the radial
equation for the scalar perturbation in the deformed Hořava–
Lifshitz black hole spacetime

d2 R(r)

dr2∗
+ [

ω2 − V (r)
]

R(r) = 0, (15)

where r∗ is the tortoise coordinate (which is defined by dr∗ = 1
f dr)

and the effective potential V (r) reads

V (r) = 2(r2 − 2Mr + α)

r2 + 2α + √
r4 + 8αMr

×
[

l(l + 1)

r2
+ 1

α

(
1 − r3 + 2αM

r
√

r4 + 8αMr

)]
. (16)

Obviously, as α = 0 the effective potential V (r) can be reduced
to that of the Schwarzschild black hole. When α increases we find
that the peak value of the potential barrier gets lower for l = 0 and
higher for l = 1, which is shown in Fig. 1. In the Reissner–Norström
black hole background, for all l the peak value of the effective po-
tential increases with the charge q of the black hole. This means
that although the formulas of the outer and inner horizons are
very similar, the behaviors of the effective potential are different
in these black hole background. In the Einstein–Born–Infeld black
hole, the variety of the effective potential with the charge q is
similar to that in Reissner–Norström black hole spacetime. How-
ever, the Born–Infeld scale parameter b decreases the peak value
of V (r) for all l. These results imply the quasinormal modes in the
deformed Hořava–Lifshitz black hole possess some different prop-
erties from those of the black holes in the Einstein–Maxwell and
Einstein–Born–Infeld gravities.

We are now in a position to apply the third-order WKB ap-
proximation method approximation to evaluate the fundamental
quasinormal modes (n = 0) of massless scalar perturbation in the
deformed Hořava–Lifshitz black hole. We expect to see what ef-
fects of Hořava–Lifshitz parameter α can be reflected in the quasi-
normal modes’ behavior. The formula for the complex quasinormal
frequencies ω in this approximation is given by [36–38]

ω2 = [
V 0 + (−2V ′′

0

)1/2
Λ

] − i

(
n + 1

2

)(−2V ′′
0

)1/2
(1 + Ω), (17)

where

Λ = 1

(−2V ′′
0 )1/2

{
1

8

(
V (4)

0

V ′′
0

)(
1

4
+ α2

)

− 1

288

(
V ′′′

0

V ′′
0

)2(
7 + 60α2)},

Ω = 1

(−2V ′′
0 )

{
5

6912

(
V ′′′

0

V ′′
0

)4(
77 + 188α2)

− 1

384

(
V ′′′2

0 V (4)
0

V ′′3
0

)(
51 + 100α2)

+ 1

2304

(
V (4)

0

V ′′
0

)2(
67 + 68α2)

+ 1

288

(
V ′′′

0 V (5)
0

V ′′2
0

)(
19 + 28α2)

− 1

288

(
V (6)

0

V ′′
0

)(
5 + 4α2)}, (18)

and

α = n + 1

2
, V (s)

0 = ds V

drs∗

∣∣∣∣
r∗=r∗(rp)

,

n is overtone number and rp is the value of polar coordinate r
corresponding to the peak of the effective potential (16). Setting
M = 1 and substituting the effective potential (16) into the for-
mula above, we can obtain the quasinormal frequencies of scalar
perturbation in the deformed Hořava–Lifshitz black hole.

In Tables 1–4, we list the fundamental quasinormal frequen-
cies of the massless scalar perturbation field for fixed l = 0, 1
and 2 in the deformed Hořava–Lifshitz, the Reissner–Norström and
Einstein–Born–Infeld black hole spacetimes, respectively. From Ta-
ble 1 and Figs. 2 and 3, we find that with the increase of the
parameter α the real parts decrease for l = 0 and increase for l = 1
and l = 2. The absolute value of imaginary parts for all l decrease.
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