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Recently, a strong debate has been pursued about the Newtonian limit (i.e. small velocity and weak
field) of fourth order gravity models. According to some authors, the Newtonian limit of f (R)-gravity
is equivalent to the one of Brans–Dicke gravity with ωBD = 0, so that the PPN parameters of these
models turn out to be ill-defined. In this Letter, we carefully discuss this point considering that fourth
order gravity models are dynamically equivalent to the O’Hanlon Lagrangian. This is a special case of
scalar–tensor gravity characterized only by self-interaction potential and that, in the Newtonian limit,
this implies a non-standard behavior that cannot be compared with the usual PPN limit of General
Relativity. The result turns out to be completely different from the one of Brans–Dicke theory and in
particular suggests that it is misleading to consider the PPN parameters of this theory with ωBD = 0 in
order to characterize the homologous quantities of f (R)-gravity. Finally the solutions at Newtonian level,
obtained in the Jordan frame for an f (R)-gravity, reinterpreted as a scalar–tensor theory, are linked to
those in the Einstein frame.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Recently, several authors claimed that higher order theories
of gravity, in particular f (R)-gravity [1], are characterized by an
ill-defined behavior in the Newtonian regime. In a series of pa-
pers [2], it is discussed that higher order theories violate experi-
mental constraints of General Relativity (GR) since a direct analogy
between f (R)-gravity and Brans–Dicke gravity [3] gives the Brans–
Dicke characteristic parameter, in metric formalism, ωBD = 0 while
it should be ωBD → ∞ to recover the standard GR. Actually despite
the calculation of the Newtonian limit of f (R), directly performed
in the Jordan frame, have showed that this is not the case [4,5],
it remains to clarify why the analogy with Brans–Dicke gravity
seems to fail its predictions also if one is assuming f (R) � R1+ε

with ε → 0. The shortcoming could be overcome once the correct
analogy between f (R)-gravity and the scalar–tensor framework is
taken into account.

The action of the Brans–Dicke gravity, in the Jordan frame,
reads:
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ABD
JF =

∫
d4x

√−g

[
φR + ωBD

φ;αφ;α

φ
+ X Lm

]
, (1)

where there is a generalized kinetic term and no potential is
present. On the other hand, considering a generic function f (R)

of the Ricci scalar R , one has:

A f (R)
JF =

∫
d4x

√−g
[

f (R) + X Lm
]
. (2)

In both cases, X = 8πG
c4 is the standard Newton coupling, Lm is

the perfect fluid matter Lagrangian and g is the determinant of
the metric.

As is said above, f (R)-gravity can be re-interpreted as a scalar–
tensor theory by introducing a suitable scalar field φ which non-
minimally couples with the gravity sector. It is important to re-
mark that such an analogy holds in a formalism in which the scalar
field displays no kinetic term but is characterized by means of a
self-interaction potential which determines the dynamics (O’Han-
lon Lagrangian) [6]. This consideration, therefore, implies that the
scalar field Lagrangian, equivalent to the purely geometrical f (R)

one, turns out to be different with respect to the above ordinary
Brans–Dicke definition (1). This point represents a crucial aspect
of our analysis. In fact, as we will see below, such a difference
will imply completely different results in the Newtonian limit of
the two models and, consequently, the impossibility to compare
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predictions coming from the PPN approximation of Brans–Dicke
models to those coming from f (R)-gravity.

The layout of the Letter is the following. In Section 2, we dis-
cuss the solutions in the Newtonian limit of f (R)-gravity by using
the analogies with the O’Hanlon theory. Section 3 is devoted to the
analysis of the solutions in the limit f (R) → R and the interpre-
tation of PPN parameters γ , β . Conformal transformations and the
solutions in the Newtonian limit approximation are considered in
Section 4. Concluding remarks are drawn in Section 5.

2. The Newtonian limit of f (R)-gravity by O’Hanlon theory

Before starting with our analysis, let us remind that the field
equations in metric formalism, coming from f (R)-gravity, are

Hμν = f ′(R)Rμν − 1

2
f (R)gμν − f ′(R);μν + gμν� f ′ = X Tμν

(3)

which have to be solved together to the trace equation

� f ′(R) + f ′(R)R − 2 f (R)

3
= X

3
T . (4)

Let us notice that this last expression assigns the evolution of the

Ricci scalar as a dynamical quantity. Here, Tμν = −2√−g
δ(

√−gLm)

δgμν is

the energy–momentum tensor of matter, while T = T σ
σ is the

trace, f ′(R) = df (R)
dR . The convention for Ricci’s tensor is Rμν =

Rσ
μσν while for the Riemann tensor is Rα

βμν = Γ α
βν,μ + · · · .

The affine connections are the Christoffel symbols of the met-
ric: Γ

μ
αβ = 1

2 gμσ (gασ ,β + gβσ ,α − gαβ,σ ). The adopted signature is
(+ − −−).

On the other hand, the so-called O’Hanlon Lagrangian [6] can
be written as

AOH
JF =

∫
d4x

√−g
[
φR − V (φ) + X Lm

]
, (5)

where V (φ) is the self-interaction potential. Field equations are
obtained by varying Eq. (5) with respect to both gμν and φ which
now represent the dynamical variables. Thus, one obtains

φGμν + 1

2
V (φ)gμν − φ;μν + gμν�φ = X Tμν, (6)

R − dV (φ)

dφ
= 0, (7)

�φ − 1

3

[
φ

dV (φ)

dφ
− 2V (φ)

]
= X

3
T , (8)

where we have displayed the field equation for φ. Eq. (8) is a com-
bination of the trace of (6) and (7). f (R)-gravity and O’Hanlon
gravity can be mapped one into the other considering the follow-
ing equivalences

φ = f ′(R), (9)

V (φ) = f ′(R)R − f (R), (10)

φ
dV (φ)

dφ
− 2V (φ) = 2 f (R) − f ′(R)R (11)

and supposing that the Jacobian of the transformation φ = f ′(R)

is non-vanishing. Henceforth we can consider, instead of Eqs. (3)–
(4), a new set of field equations determined by the equivalence
between the O’Hanlon gravity and the f (R)-gravity:

φRμν − 1

6

[
V (φ) + φ

dV (φ)

dφ

]
gμν − φ;μν = X Σμν, (12)

�φ − 1

3

[
φ

dV (φ)

dφ
− 2V (φ)

]
= X

3
T , (13)

where Σμν
.= Tμν − 1

3 T gμν .
Let us, now, calculate the Newtonian limit of Eqs. (12)–(13).

To perform this calculation, the metric tensor gμν and the scalar
field φ have to be perturbed with respect to the background. After,
one has to search for solutions at the (v/c)2 order in term of the
metric and the scalar field entries. It is

gμν �
(

1 + g(2)
00

�0T

�0 −δi j + g(2)
i j

)
, (14)

φ ∼ φ(0) + φ(2). (15)

The differential operators turn out to be approximated as

� ≈ ∂2
0 − � and ;μν≈∂2

μν, (16)

since time derivatives increase the degree of perturbation, they can
be discarded [4]. From a physical point of view, this position holds
since Newtonian limit implies also the slow motion.

Actually in order to simplify calculations, we can exploit the
gauge freedom that is intrinsic in the metric definition. In partic-
ular, we can choose the harmonic gauge gρσ Γ

μ
ρσ = 0 so that the

components of Ricci tensor reduces to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R(2)
00 = 1

2
�g(2)

00 ,

R(3)
0i = 0,

R(2)
i j = 1

2
�g(2)

i j .

(17)

Accordingly, we develop the self-interaction potential at second or-
der. In particular, the quantities in Eqs. (12) and (13) read:

V (φ) + φ
dV (φ)

dφ
� V

(
φ(0)

) + φ(0) dV (φ(0))

dφ

+
[
φ(0) d2 V (φ(0))

dφ2
+ 2

dV (φ(0))

dφ

]
φ(2), (18)

φ
dV (φ)

dφ
− 2V (φ) � φ(0) dV (φ(0))

dφ
− 2V

(
φ(0)

)
+

[
φ(0) d2 V (φ(0))

dφ2
− dV (φ(0))

dφ

]
φ(2). (19)

Field equations (12)–(13), solved at 0th order of approximation,
provide the two solutions

V
(
φ(0)

) = 0 and
dV (φ(0))

dφ
= 0 (20)

which fix the 0th order terms of the self-interaction potential;
therefore we have

−φ
dV (φ)

dφ
� −φ(0) d2 V (φ(0))

dφ2
φ(2) .= 3m2φ(2), (21)

where the constant factor m2 can be easily interpreted as a mass
term as will become clearer in the following analysis (see also [9]).
Now, taking into account the above simplifications, we can rewrite
the field equations at the (v/c)2 order in the form:

�g(2)
00 = 2X

φ(0)
Σ

(0)
00 − m2 φ(2)

φ(0)
, (22)

�g(2)
i j = 2X

φ(0)
Σ

(0)
i j + m2 φ(2)

φ(0)
δi j + 2

φ
(2)
,i j

φ(0)
, (23)

�φ(2) − m2φ(2) = − X
3

T (0). (24)
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