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We present a quantitative study of the role played by different components characterizing the nucleon–
nucleon interaction in the evolution of the nuclear shell structure. It is based on the spin–tensor
decomposition of an effective two-body shell-model interaction and the subsequent study of effective
single-particle energy variations in a series of isotopes or isotones. The technique allows to separate
unambiguously contributions of the central, vector and tensor components of the realistic effective
interaction. We show that while the global variation of the single-particle energies is due to the central
component of the effective interaction, the characteristic behavior of spin–orbit partners, noticed recently,
is mainly due to its tensor part. Based on the analysis of a well-fitted realistic interaction in the sdpf
shell-model space, we analyze in detail the role played by the different terms in the formation and/or
disappearance of N = 16, N = 20 and N = 28 shell gaps in neutron-rich nuclei.

© 2010 Elsevier B.V. All rights reserved.

The shell structure is a common feature of finite quantum sys-
tems. Amongst them, atomic nuclei represent unique objects char-
acterized by the appearance of a specific shell structure. In partic-
ular, the magic numbers which correspond to the shell closures,
will change depending on the N/Z ratio, i.e. when we move from
nuclei in the vicinity of the β-stability line towards the particle
driplines. This has attracted a lot of attention nowadays because an
increasing number of nuclei far from stability have become acces-
sible experimentally (e.g., [1] and references therein). The hope to
reach even more exotic nuclei demands for an improved modeliza-
tion, i.e. in the context of nuclear astrophysics. Since the underly-
ing shell structure determines nuclear properties in a major way,
changes of nuclear shell closures and the mechanisms responsible
for that should be much better understood.

Recently, the role of different components of the nucleon–
nucleon (NN) interaction in the evolution of the shell structure has
been actively discussed. Based on the analysis of the origin of a
shell closure at N = 16, Otsuka et al. [2] have suggested that a
central spin–isospin-exchange term, f (r)(�σ · �σ)(�τ · �τ ) of the NN
interaction plays a decisive role in the shell formation.

However, from a systematic analysis of heavier nuclei, another
conjecture has been put forward, namely, the dominant role played
by the tensor force [3]. The evidence is based on the compari-
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son of the position of experimental one-particle or one-hole states
in nuclei adjacent to semi-magic configurations with the so-called
effective single-particle energies (ESPE’s). Within the shell-model
framework, the latter ESPE’s are defined [4] as one-nucleon sepa-
ration energies for an occupied orbital (or extra binding gained by
the addition of a nucleon to an unoccupied orbital) evaluated from
a Hamiltonian containing nucleon single-particle energies (the bare
single-particle energies with respect to a closed-shell core) plus
the monopole part of the two-body residual interaction [5,6], i.e.

Ĥmon =
∑
j,ρ

ε
ρ
j n̂ρ

j +
∑

j, j′,ρ,ρ ′
V ρρ ′

j j′
n̂ρ

j (n̂
ρ ′
j′ − δ j j′δρρ ′)

(1 + δ j j′δρρ ′)
, (1)

where j denotes a set of single-particle quantum numbers (nlj)
and ρ refers to a proton (π ) or to a neutron (ν), n̂ρ

j are particle-

number operators. V ρρ ′
j j′ are centroids of the two-body interaction

defined as [5–7]

V ρρ ′
j j′ =

∑
J 〈 jρ j′ρ ′ |V | jρ j′ρ ′ 〉 J M(2 J + 1)(1 + (−1) J δ j j′δρρ ′)

(2 jρ + 1)(2 j′ρ ′ + 1 − δ j j′δρρ ′)
, (2)

where the total angular momentum of a two-body state J runs
over all possible values.

The monopole Hamiltonian represents a spherical mean field
extracted from the interacting shell model. Its spherical single-
particle states, or ESPE’s, provide an important ingredient for the
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formation of shells and interplay between spherical configura-
tions and deformation in nuclei. Large shell gaps obtained from
a monopole Hamiltonian are a prerequisite to obtain certain magic
numbers. A reduction of the spherical shell gaps may lead to for-
mation of a deformed ground state, if the correlation energy of a
given excited configuration and a decrease in the monopole part
are large enough to make such an intruder excitation energetically
favorable.

For example, the ESPE of the ν0 f7/2 orbital at Z = 8, N = 20
is the difference between total energy obtained, using Eq. (1), for
28O in its ground state and 29O with an extra neutron in the
0 f7/2 state assuming normal filling of the orbitals (normal filling
is used throughout this work). Considering a series of isotopes or
isotones, it is clear that ESPE’s will experience a shift provided by
the monopole part of the proton–neutron matrix elements, mainly.
The bigger the overlap of the proton and neutron radial wave func-
tions and the higher the j-values of the orbitals considered will
lead, in general, to more drastic changes. In the present study
we take into account the mass dependence of the two-body ma-
trix elements of the effective interaction according to the rule:
V (A) = (Acore/A)1/3 V (Acore).

From the analysis of the experimental data and the ESPE’s it
has been noticed [3,8] that systematically

∣∣V πν
j> j′<

∣∣ >
∣∣V πν

j> j′>
∣∣, ∣∣V πν

j< j′>
∣∣ >

∣∣V πν
j< j′<

∣∣, (3)

where j> = l + 1/2 and j< = l − 1/2 are proton orbitals and
j′> = l′ + 1/2 and j′< = l′ − 1/2 are neutron orbitals. Thus, an extra
attraction is manifested between generalized spin–orbit partners
(proton j = l + 1/2 and neutron j′ = l′ − 1/2 with l �= l′ or vice
versa).

This remarkable property is in line with the analytic relation
valid for a pure tensor force [3], i.e. using the above notation,
(2 j> +1)V πν

j> j′ +(2 j< +1)V πν
j< j′ = 0. To strengthen this idea, Otsuka

et al. [3] have compared changes of the ESPE’s in Ca, Ni and Sb iso-
topes, as due to the tensor force only and estimating its strength
as resulting from a (π + ρ)-exchange potential with a cut-off at
0.7 fm, with available experimental data.

This work has stimulated a large number of investigations using
mean-field approaches [9–23]. It is worth noting that phenomeno-
logical interactions, such as Skyrme and Gogny force, most fre-
quently used in mean-field calculations, did not include a tensor
term [24]. Provided its importance, a tensor term should be in-
troduced and the parameters re-adjusted, what up to now, is not
satisfactorily reached yet (see, e.g. Refs. [23,25]).

However, importance of the tensor force within the shell
model [3,8] is mainly demonstrated in an empirical way. It is
evident, that the choice of the particular cut-off that was used
to fix the strength of the tensor force component plays a cru-
cial role in obtaining quantitative result for shifts in the ES-
PE’s as presented in Fig. 4 of Ref. [3]. It is also well known
that the NN interaction is subjected to a strong renormalization
before it can be handled as an effective interaction in many-
body calculations within a restricted model space [26]. It is not
straightforward to trace how the tensor component will become
renormalized amongst the other terms contributing to the NN in-
teraction. Moreover, many shell-model interactions having high
descriptive and predictive power were obtained by a χ2-fit of
two-body matrix elements to reproduce known experimental lev-
els for a wide range of nuclei studied within a given model
space (e.g. [27,28]). Even the effective interactions, maximally
preserving their microscopic origin (based on a G-matrix), need
further phenomenological correction (see e.g., [6,29]). There is
strong indication that inclusion of three-nucleon forces can heal
the microscopically derived effective interaction, in particular, im-

prove its monopole part (see Ref. [30] and references therein for
ab-initio studies). However, there are still no systematic calcula-
tions available up to date for many-nucleon systems either within
the shell model, or within the density-functional approach. This
is why the present study of the two-nucleon case is of inter-
est.

In spite of the indirect evidence at a two-body level [3], up
to now, the role played by the tensor force is not well determined.
For example, recent shell-model studies based on large-scale calcu-
lations using a realistic effective interaction in the heavy Sn nuclei
region [31] conclude on the absence of a characteristic effect ex-
pected to result from a tensor force component.

In this Letter we present a quantitative study of the role played
by different components of the effective interaction. It is based on
the spin–tensor decomposition of the two-body interaction, which
involves tensors of rank 0, 1 and 2 in spin and configuration space.
The procedure allows to separate the central, vector and tensor
parts of the effective interaction. The monopole properties of each
component can be studied separately, elucidating unambiguously
its role in the shell evolution. The method has already been ap-
plied in a similar context [32,33], however, the authors used dif-
ferent effective interactions in smaller model spaces, concluding on
a second-order tensor effect only. Contrary to these results, we put
into evidence an important first-order tensor effect in the present
study.

A spin–tensor decomposition of the two-particle interaction has
been known for many years [34–40]. In a given model space, a
complete set of two-body matrix elements determines the prop-
erties of nuclei ranging within this space. For spin 1/2 fermions
(nucleons), one can construct from their spin operators a complete
set of linear operators in a two-particle spin space:

S(0) = 1, S(0)
2 = [σ1 × σ2](0), S(1)

3 = σ1 + σ2,

S(2)
4 = [σ1 × σ2](2), S(1)

5 = [σ1 × σ2](1), S(1)
6 = σ1 − σ2.

By coupling the spin tensor operators with the corresponding rank
tensors in the configuration space one can construct scalar inter-
action terms. The most general two-body interaction can then be
written as

V (1,2) ≡ V =
∑

k=0,1,2

(
S(k) · Q (k)

) =
∑

k=0,1,2

V (k). (4)

Here, V (0) and V (2) represent the central and tensor parts of
the effective NN interaction. The V (k=1) term contains the so-
called symmetric (S(1)

i=3) and antisymmetric (S(1)
i=5,6) spin–orbit op-

erators [37], which we will denote as LS and ALS, respectively. To
obtain the matrix elements for the different multipole components
in j j coupling, first, one transforms two-body matrix elements be-
tween normalized and antisymmetrized states from j j coupling to
L S coupling in the standard way. The L S-coupled matrix elements
of V (k) can be calculated from the L S coupled matrix elements of
V as
〈
(ab) : L S, J MT MT

∣∣V (k)
∣∣(cd) : L′ S ′, J MT MT

〉

= (2k + 1)(−1) J
{

L S J
S ′ L′ k

}

×
∑

J ′
(−1) J ′(2 J ′ + 1

){ L S J ′
S ′ L′ k

}

× 〈
(ab) : L S, J ′MT MT

∣∣V
∣∣(cd) : L′ S ′, J ′MT MT

〉
, (5)

where a ≡ (na, la). Finally, starting from the L S coupled matrix el-
ements of V (k) , for each k, we arrive at a set of j j coupled matrix
elements to be used for further investigation. It is important to
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