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We investigate a spherical collapse model with and without the spatial curvature. We obtain the exact
solutions of dynamical quantities such as the ratio of the scale factor to its value at the turnaround epoch
and the ratio of the overdensity radius to its value at the turnaround time with general cosmological
parameters. The exact solutions of the overdensity at the turnaround epoch for the different models are
also obtained. Thus, we are able to obtain the nonlinear overdensity at any epoch for the given model.
We obtain that the nonlinear overdensity of the Einstein de Sitter (EdS) universe at the virial epoch is
18π2( 1

2π + 3
4 )2 � 147 instead of the well-known value 18π2 � 178. In the open universe, perturbations

are virialized earlier than in the flat one and thus clusters are denser at the virial epoch. Also the
critical density threshold of EdS universe from the linear theory at the virialized epoch is obtained as

3
20 (9π +6)

2
3 � 1.58 instead of 3

20 (12π)
2
3 � 1.69. This value is same for the close and the open universes.

We find that the observed quantities at high redshifts are less sensitive between different models.
Even though the low redshift cluster shows the stronger model dependence than high redshift one, the
differences between models might be still too small to be distinguished by observations if the curvature
is small. From these analytic forms of dynamical quantities, we are able to estimate the abundances of
both virialized and non-virialized clusters and the temperature and luminosity functions at any epoch.
The current concordance model prefers the almost flat universe and thus the above results might be
restricted by the academic interests only. However, the mathematical structure of the evolution equations
of physical quantities for the curved space is identical with that for the flat universe including the dark
energy with the equation of state ωde = − 1

3 . Thus, we might be able to extend these analytic solutions to
the general dark energy model and they will provide the useful tools for probing the properties of dark
energy.

© 2010 Elsevier B.V. All rights reserved.

1. Spherical collapse model

Background evolution equations of the physical quantities in a
FRW universe with the matter are given by

H2 =
(

ȧ

a

)2

= 8πG

3
ρm − k

a2
= 8πG

3
ρcr, (1.1)

ä

a
= −4πG

3
ρm, (1.2)

ρ̇m + 3

(
ȧ

a

)
ρm = 0, (1.3)

where a is the scale factor, ρm is the energy density of the mat-
ter, ρcr is the critical energy density, and k is chosen to be +1,
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0, or −1 for spaces of constant positive, zero, or negative spatial
curvatures, respectively. In terms of the ratio of the matter den-
sity to the critical density Ωm, the above Friedmann equation (1.1)
becomes

k

H2a2
≡ Ωk = Ωm − 1, (1.4)

which is valid for all times.
We consider a spherical perturbation in the matter density.

ρcluster is the matter density within the spherical overdensity ra-
dius R . The flatness condition is not held because of the per-
turbation in the matter. Thus, we have another set of equations
governing the dynamics of the spherical perturbation [1]:

R̈

R
= −4πG

3
ρcluster, (1.5)

ρ̇cluster + 3

(
Ṙ

R

)
ρcluster = 0, (1.6)
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Fig. 1. tta and τta for the different values of zta . (Left) H0tta versus Ω0
m for the different values of zta = 0.6, 1.2, and 2.0 (from top to bottom). (Right) τta versus Ω0

m for the
same values of zta as in the left panel.

where ρcluster is the energy density of the clustering matter. The
radius of the overdensity R evolves slower than the scale factor a
and reaches its maximum size Rta at the turnaround epoch zta and
then the system begins to collapse.

Cosmological parameters and the curvature of the Universe can
be constrained from the growth of large scale structure and the
abundance of rich clusters of galaxies. There have been numerous
works related to this [2–12]. Most of them reach to the similar
conclusions based on the conventional approximate solutions of
the background scale factor and of the overdensity radius. It is nat-
ural to expect that the correct values for the virial radius and the
nonlinear overdensity obtained from the exact solutions might be
different from those obtained from the conventional approximate
solutions. We investigate this.

Now we adopt the notations in Ref. [11] to investigate the evo-
lutions of a and R

x = a

ata
, (1.7)

y = R

Rta
, (1.8)

where ata and Rta are the scale factor and the radius at zta, respec-
tively. Then Eqs. (1.1) and (1.5) are rewritten as

dx

dτ
=

√
x−1 − Q −1

ta , (1.9)

d2 y

dτ 2
= −1

2
ζ y−2, (1.10)

where dτ = H(xta)
√

Ωm(xta)dt ≡ Hta
√

Ωmta dt , Q ta = Ωm
Ωk

|zta ≡
Ωmta
Ωkta

= Ωmta
Ωmta−1 = Ω0

m
Ω0

m−1
(1 + zta), ζ = ρcluster

ρm
|zta , and xta ≡ x(zta) = 1

from Eq. (1.7). Ω0
m and Ω0

k represent the present values of the
energy density contrasts of the matter and the curvature term, re-
spectively. Eqs. (1.9) and (1.10) can be solved analytically.

The analytic solution of Eq. (1.9) is given by

x∫
0

dx′√
x′−1 − Q −1

ta

=
τ∫

0

dτ ′

⇒ 2

3
x

3
2 F

[
1

2
,

3

2
,

5

2
,

x

Q ta

]
= τ , (1.11)

where F is the hypergeometric function and we use the boundary
condition x = 0 when τ = 0 (see Appendix A for details). From this
equation, the exact turnaround time τta is given by

τta = 2

3
F

[
1

2
,

3

2
,

5

2
,
Ω0

m − 1

Ω0
m

(1 + zta)
−1

]

= Hta

√
Ωmta tta = H0

√
Ω0

m (1 + zta)
3
2 tta, (1.12)

where we use the fact that xta = 1, the relations Q ta = Ω0
m

Ω0
m−1

×
(1 + zta), and τ = Hta

√
Ωmta t . This exact analytic form of the

turnaround time will be used to investigate the other quantities.
As expected, τta (tta) depends on Ω0

m (i.e. Ω0
k ) and zta as given

in Eq. (1.12). We show these properties of τta (tta) in Fig. 1. In the
left panel of Fig. 1, we show the dependence of tta (normalized by
multiplying with H0) on Ω0

m for the different values of zta models.
The solid, dashed, and dot-dashed lines (from top to bottom) cor-
respond to zta = 0.6,1.2, and 2.0, respectively. Eq. (1.11) is the evo-
lution of the background scale factor a and we can interpret it as
the age of the Universe is a decreasing function of Ω0

m. Larger Ω0
m

implies faster deceleration, which corresponds to a more rapidly
expanding universe early on. Also larger zta means the earlier for-
mation of the structure and thus gives the smaller tta. We also
show the Ω0

m dependence of τta for the values of zta in the right
panel of Fig. 1. Because τta = Hta

√
Ωmtatta, τta becomes larger for

the larger values of Ω0
m.

The exact analytic solution of y also can be obtained as (see
Appendix A)

ArcSin[√y ] − √
y(1 − y) = √

ζτ , when τ � τta, (1.13)√
y(1 − y) − ArcSin[√y ] + π

2
= √

ζ (τ − τta),

when τ � τta, (1.14)

where τ and τta are given in Eqs. (1.11) and (1.12). ζ can be ob-
tained from this analytic solution (1.13) (or equally from Eq. (1.14))
by using the fact that yta = 1

ζ =
(

π

2τta

)2

=
(

3π

4

)2(
F

[
1

2
,

3

2
,

5

2
,
(Ω0

m − 1)

Ω0
m

(1 + zta)
−1

])−2

, (1.15)

where we use Eq. (1.12). When Ω0
m = 1, F [ 1

2 , 3
2 , 5

2 ,0] = 1 and thus
ζ = ( 3π

4 )2. This factor ( 3π
4 )2 is the well-known value of ζ for the

Einstein de Sitter (EdS) universe (Ωm = 1) [1,13]. The general value
of ζ for open or closed Universe is given by Eq. (1.15). We show
the behavior of ζ in Fig. 2.
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