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We apply high-order many-body perturbation theory for the calculation of ground-state energies of
closed-shell nuclei using realistic nuclear interactions. Using a simple recursive formulation, we compute
the perturbative energy contributions up to 30th order and compare to exact no-core shell model
calculations for the same model space and Hamiltonian. Generally, finite partial sums of this perturbation
series do not show convergence with increasing order, but tend to diverge exponentially. Nevertheless,
through a simple resummation via Padé approximants it is possible to extract rapidly converging and
highly accurate results for the ground-state energy once perturbative contributions beyond 5th order are
included.
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1. Introduction

The treatment of the nuclear many-body problem is a central
and long-standing issue in nuclear structure theory. Ideally, we
would like to solve the many-body problem ab initio, i.e., start-
ing from a given nuclear Hamiltonian without any conceptual ap-
proximations. With the advent of high-precision nuclear potentials
that are based systematically on Quantum Chromodynamics (QCD)
through chiral effective field theory [1,2], the demand for exact ab
initio solutions of the nuclear many-body problem has grown. Only
these schemes establish a rigorous and quantitative connection be-
tween nuclear structure observables and the underlying QCD input.

The no-core shell model (NCSM) is one of the most univer-
sal exact ab initio methods, which gives access to all aspects of
nuclear structure [3–5]. Other methods, are either restricted to cer-
tain classes of Hamiltonians, like the Green’s Function Monte Carlo
approach [6], or they are limited to certain nuclei and observables,
like the coupled-cluster approach [7]. All of them are computa-
tionally demanding, which leads to a severe limitation regarding
the number of nucleons that can be handled.

Therefore, approximate many-body schemes using the same
Hamiltonians, i.e. approximate ab initio methods, also provide in-
dispensable information. In particular approaches that use con-
trolled and systematically improvable approximations are of great
practical importance. In this category, many-body perturbation the-
ory (MBPT) is one of the most powerful and widely used methods.
On the one hand, the evaluation of low orders of perturbation
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theory is computationally simple and can be done for the whole
nuclear mass range [8–11] as well as for infinite nuclear matter
[12]. On the other hand, it is deemed systematically improvable,
either by extending the MBPT calculations order-by-order or by
using infinite partial summations, like ladder- or ring-type sum-
mations [13–15]. However, the accuracy of low-order perturbative
estimates, e.g. for ground-state energies, or possible extensions of
the MBPT series to higher orders and the resulting convergence
pattern are rarely, if ever, addressed in the nuclear structure con-
text.

In this Letter, we apply MBPT for the calculation of the ground
state energy of several closed-shell nuclei. We extend the order-
by-order calculation of the perturbative energy contributions up to
30th order, study the convergence behavior, and compare to exact
NCSM calculations for the same Hamiltonian and model space. We
introduce Padé approximants as a highly efficient tool for the re-
summation of the divergent power-series of MBPT into a rapidly
converging series and demonstrate their accuracy for the descrip-
tion of ground-state energies at sufficiently high orders.

2. Many-body perturbation theory

2.1. Formalism

We aim at a perturbative expansion of the many-nucleon
Schrödinger equation

H|Ψn〉 = En|Ψn〉 (1)

for the translational invariant nuclear Hamiltonian H = T −
Tcm + V , where we assume V to be a two-body interaction for
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simplicity. In a first step we have to chose the unperturbed ba-
sis, which in turn defines the unperturbed Hamiltonian. From the
practical point of view, a basis of Slater-determinants constructed
from a set of single-particle states is most convenient. The un-
derlying single-particle basis will typically be a Hartree–Fock or
a harmonic oscillator basis—for simplicity we assume the latter.
The unperturbed Hamiltonian H0 is a one-body operator contain-
ing the kinetic energy T and a harmonic oscillator potential. The
unperturbed Slater determinants |Φn〉 fulfill the eigenvalue relation

H0|Φn〉 = εn|Φn〉 (2)

with eigenvalues εn being the sum of the single-particle energies
of the occupied states. After the unperturbed Hamiltonian is fixed,
the perturbation is defined through W = H − H0. This partition-
ing leads to the Møller–Plesset formulation of MBPT and obviously
other partitionings of the Hamiltonian are possible [16,17]. For
ease of presentation, we assume that the unperturbed state corre-
sponding to the eigenstate we are interested in is non-degenerate,
as it is the case for the ground state of closed shell nuclei. In
the case of degeneracy, as e.g. for the excited states of closed
shell nuclei, one would have to diagonalize the full Hamiltonian
in the degenerate subspace and pick the eigenstates with the de-
sired quantum numbers as unperturbed states.

The standard Rayleigh–Schrödinger perturbation series can now
be constructed based on a Hamiltonian (using the notation from
Ref. [17])

H(λ) = H0 + λW (3)

containing an auxiliary expansion parameter λ that continuously
connects the unperturbed Hamiltonian H0 = H(λ = 0) with the full
Hamiltonian H = H(λ = 1). The energy eigenvalues En(λ) and the
corresponding eigenvectors |Ψn(λ)〉 of H(λ) are formulated as a
power series in λ

En(λ) = E(0)
n + λE(1)

n + λ2 E(2)
n + · · · ,∣∣Ψn(λ)

〉 = ∣∣Ψ (0)
n

〉 + λ
∣∣Ψ (1)

n
〉 + λ2

∣∣Ψ (2)
n

〉 + · · · . (4)

In the absence of degeneracy the lowest-order contributions are
simply given by the unperturbed quantities, i.e.,

E(0)
n = εn,

∣∣Ψ (0)
n

〉 = |Φn〉. (5)

Inserting the Hamiltonian (3) and the power series (4) into the
Schrödinger equation (1) leads to the fundamental equation

H0
∣∣Ψ (0)

n
〉 + ∞∑

p=1

λp(
W

∣∣Ψ (p−1)
n

〉 + H0
∣∣Ψ (p)

n
〉)

= E(0)
n

∣∣Ψ (0)
n

〉 + ∞∑
p=1

λp

( p∑
j=0

E( j)
n

∣∣Ψ (p− j)
n

〉)
. (6)

Assuming that the unperturbed states form an orthonormal basis
and using the intermediate normalization 〈Ψ (0)

n |Ψn(λ)〉 = 1 we ob-
tain 〈Ψ (0)

n |Ψ (p)
n 〉 = 0 for p > 0, which allows us to project-out all

required information on the individual contributions in the power
series. By multiplying Eq. (6) with 〈Ψ (0)

n | and matching same or-
ders of λ on both sides, we immediately obtain a simple expression
for the pth-order energy contribution

E(p)
n = 〈

Ψ
(0)

n

∣∣W ∣∣Ψ (p−1)
n

〉
. (7)

By multiplying Eq. (6) with 〈Ψ (0)
m | with m �= n and matching λ-

orders, we obtain an expression for the amplitudes

C (p)
n,m = 〈
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(0)

m

∣∣Ψ (p)
n

〉
= 1
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(8)

which characterize the perturbative corrections to the eigenstates
|Ψ (p)

n 〉 expanded in the unperturbed basis∣∣Ψ (p)
n

〉 = ∑
m

C (p)
n,m

∣∣Ψ (0)
m

〉
(9)

with C (p)
n,n = 0 for p > 0 and C (0)

n,m = δn,m .
We can cast Eqs. (7) and (8) into a more transparent form by

systematically introducing the amplitudes C (p)
n,m and formulating all

matrix elements in terms of the unperturbed states. For the pth-
order energy contribution we obtain

E(p)
n =

∑
m

〈Φn|W |Φm〉C (p−1)
n,m . (10)

Similarly we obtain for the pth-order amplitudes

C (p)
n,m = 1

εn − εm

(∑
m′

〈Φm|W |Φm′ 〉C (p−1)

n,m′ −
p∑

j=1

E( j)
n C (p− j)

n,m

)
. (11)

Together with C (0)
n,m = δn,m and E(0)

n = εn these relations form a
recursive set of equations which uniquely determines the pertur-
bative corrections for all energies and states to all orders.

Usually one would use these general expressions to derive ex-
plicit formulae for the lowest-order corrections. The matrix ele-
ments of the perturbation in the unperturbed Slater-determinant
states can be evaluated explicitly and the summations over the
many-body basis set can be replaced by summations over single-
particle states. In this way we would recover the standard expres-
sions for, e.g., the second- and third-order energy corrections [8,
11,16].

2.2. Evaluation to high orders

When attempting to evaluate the perturbative corrections be-
yond third- or forth-order the explicit formulae for the energy cor-
rections become impractical because of the large number of nested
summations. A much more elegant way to evaluate high-order
contributions makes use of the recursive structure of Eqs. (10)
and (11). The only ingredients needed are the many-body ma-
trix elements of the full Hamiltonian H with respect to the un-
perturbed basis |Φn〉. Starting from the zeroth-order coefficients
C (0)

n,m = δn,m we can readily evaluate the first-order energy con-

tribution E(1)
n from (10). This in turn allows us to compute the

first-order coefficients C (1)
n,m via (11). Generally, for the evaluation

of the energy contribution E(p)
n only the coefficients C (p−1)

n,m of the
previous order are required. For the evaluation of the coefficients
C (p)

n,m all energy contributions up to order p and all coefficients up
to order (p − 1) need to be known.

Technically, the recursive evaluation of the perturbation series
bears some resemblance to the Lanczos algorithm for the iterative
solution of the eigenvalue problem for a few extremal eigenval-
ues as it is used in the NCSM. The most significant operation
is a matrix-vector multiplication of the Hamiltonian matrix with
the coefficient vector from the previous order, which constitutes
the first term in the evaluation of the coefficients (11). Because
the second term in (11) involves the coefficient vectors from all
previous orders, we store them for simplicity. These computa-
tional elements are the same as for a simple Lanczos algorithm
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