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We study the linear growth of matter perturbations in the DGP model with the growth index γ as a
function of redshift. At the linear approximation: γ (z) ≈ γ0 + γ ′

0z, we find that, for 0.2 � Ωm,0 � 0.35,
γ0 takes the value from 0.658 to 0.671, and γ ′

0 ranges from 0.035 to 0.042. With three low redshift
observational data of the growth factor, we obtain the observational constraints on γ0 and γ ′

0 for the
�CDM and DGP models and find that the observations favor the �CDM model but at the 1σ confidence
level both the �CDM and DGP models are consistent with the observations.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Various observations show that our universe is undergoing an
accelerating expansion [1–3] and many models have been pro-
posed to explain this mysterious phenomenon. There are basically
two main classes of models. One is dark energy which yields suf-
ficient negative pressure to induce a late-time accelerated expan-
sion; the other is the modified gravity, such as the scalar-tensor
theory [4], the f (R) theory [5] and the Dvali–Gabadadze–Porrati
(DGP) braneworld scenarios [6,7], et al. However, these models
may predict the same late time accelerated cosmological expan-
sion, although they are quite different physically. So an important
task is to discriminate one from another. Recently, some attempts
have been made [8–14] in this regard. An interesting approach is
to differentiate the dark energy and the modified gravity with the
growth function δ(z) ≡ δρm/ρm of the linear matter density con-
trast as a function of redshift z. While different models give the
same late time expansion, they may produce different growth of
matter perturbations [15].

To the linear order of perturbation, the matter density perturba-
tion δ = δρm/ρm satisfies the following equation [16] at the large
scales

δ̈ + 2H δ̇ − 4πGeffρmδ = 0, (1)

where Geff is the effective Newton’s constant and the dot denotes
the derivative with respect to time t . In general relativity, Geff =
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G N where G N is the Newton’s constant. Defining the growth factor
f ≡ d ln δ/d ln a, one can obtain

df

d ln a
+ f 2 +

(
Ḣ

H2
+ 2

)
f = 3

2

Geff

G N
Ωm, (2)

where Ωm is the fractional energy density of matter. In general,
analytical solutions to Eq. (2) are hard to find, and we need to
resort to numerical methods. It has been known for many years
that there is a good approximation to the growth factor f , which
is given by [17]

f ≡ d ln δ

d ln a
� Ωm(z)γ , (3)

where γ is the growth index and is taken as a constant. This pa-
rameterized approach has been studied in some works recently,
see e.g. [18–28]. For example, substituting the above equation into
Eq. (2) and then expanding around Ωm = 1 (a good approximation
at the high redshift), one can obtain γ∞ � 0.5454 [18,20] for the
�CDM model and γ∞ � 11/16 ≈ 0.6875 [18,19] for the flat DGP
model. Therefore, in principle, one can distinguish the dark energy
model from the modified gravity model with observational data
on the growth factor. However, taking the index γ as a constant
is only an approximation although it is a very good one in certain
circumstances. More generically, one should rewrite Eq. (3) as

f ≡ d ln δ

d ln a
= Ωm(z)γ (z). (4)

Defining a new quantity γ ′ ≡ dγ (z)
dz , we can expand γ at the low

redshift, as follows

γ (z) ≈ γ0 + γ ′
0z, 0 � z � 0.5. (5)
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This approximation has been studied in Refs. [29–31], and it
was found that γ ′

0 is a quasi-constant and γ ′
0 � −0.02 for dark

energy models with a constant equation of state. However, for
modified gravity models, such as some scalar-tensor models, γ ′

0 is
negative and can take absolute values larger than those in models
inside General Relativity [30], while for the f (R) model γ ′

0 is also
negative but its value is largely outside the range found for dark
energy models in General Relativity [31]. Therefore, an accurate γ ′

0
at the low redshift could provide another characteristic discrimi-
native signature for these models.

In this Letter, we will mainly focus on the observational con-
straints on γ0 and γ ′

0 from data on the growth factor. Firstly, we
will study the linear growth index with the form γ ≈ γ0 + γ ′

0z for
the DGP model. Then, with the best fit value Ωm,0 from the obser-
vational data we will discuss the theoretical values of γ0 and γ ′

0
and the observational constraints on them.

2. Growth index of DGP model

For the DGP model, in general, Geff can be written as

Geff = G N

(
1 + 1

3β

)
, (6)

where β = 1 − 2rc H(1 + Ḣ
3H2 ) [23,32–34] and the constant rc is a

scale which sets a length beyond which gravity starts to leak out
into the bulk. According to Ref. [33], Geff

G N
can be rewritten as

1 + 1

3β
= 4Ω2

m − 4(1 − Ωk)
2 + α

3Ω2
m − 3(1 − Ωk)

2 + α
, (7)

where α ≡ 2
√

1 − Ωk(3 − 4Ωk + 2ΩmΩk + Ω2
k ), Ωk ≡ −k/(a2 H2),

and Ωm ≡ 8πGρm/(3H2). Here the spatial curvature k = 0, k > 0
and k < 0 correspond to a flat, closed and open universe respec-
tively.

For the DGP model, the modified Friedmann equation takes the
form [7,19]

H2 + k

a2
− 1

rc

√
H2 + k

a2
= 8πG

3
ρm. (8)

Defining Ωrc = 1
4r2

c H2
0

, we have

E2(z) ≡
(

H

H0

)2

= [√
Ωm,0(1 + z)3 + Ωrc + √

Ωrc

]2 + Ωk0(1 + z)2.

(9)

Setting z = 0 in the above gives rise to a constraint equation

1 = [√
Ωm,0 + Ωrc + √

Ωrc

]2 + Ωk0. (10)

Therefore, there are only two model independent parameters out
of Ωm,0, Ωrc and Ωk0.

The matter density perturbation in the DGP model satisfies the
equation [16,25]:

d2 ln δ

d(ln a)2
+

(
d ln δ

d ln a

)2

+
(

2 + d ln H

d ln a

)(
d ln δ

d ln a

)

= 3

2

(
1 + 1

3β

)
Ωm. (11)

Using

d ln H

d ln a
= Ḣ

H2
= −3

2
+ Ωk

2
− 3

2

−1 + Ωk

1 + Ωm − Ωk
(1 − Ωk − Ωm), (12)

we obtain

d2 ln δ

d(ln a)2
+

(
d ln δ

d ln a

)2

+ d ln δ

d ln a

(
1

2
(1 + Ωk)

− 3

2

−1 + Ωk

1 + Ωm − Ωk
(1 − Ωk − Ωm)

)

= 3

2

(
1 + 1

3β

)
Ωm. (13)

Thus, according to the definition of f , we have the following dif-
ferential equation

Ωm

[
3(−1 + Ωk)

1 + Ωm − Ωk
(1 − Ωk − Ωm) − Ωk

]
df

dΩm
+ f 2

+ f

[
1

2
(1 + Ωk) − 3

2

−1 + Ωk

1 + Ωm − Ωk
(1 − Ωk − Ωm)

]

= 3

2

(
1 + 1

3β

)
Ωm. (14)

Substituting the generic expression for f , Eq. (4), into Eq. (14) we
arrive at an equation on γ (z)

1

2

[
(1 + Ωk − 2γΩk) + 3(−1 + Ωk)

1 + Ωm − Ωk
(2γ − 1)(1 − Ωk − Ωm)

]

− (1 + z)γ ′ ln Ωm + Ω
γ
m = 3

2

(
1 + 1

3β

)
Ω

1−γ
m . (15)

If we only consider the linear expansion at the low redshift as
given in Eq. (5), it is easy to derive

γ ′
0 = (

ln Ω−1
m,0

)−1
[
−Ω

γ0
m,0 + 3

2

(
1 + 1

3β

)
Ω

1−γ0
m,0

− 1

2
(1 + Ωk,0 − 2γ0Ωk,0)

− 3
−1 + Ωk,0

1 + Ωm,0 − Ωk,0
(1 − Ωk,0 − Ωm,0)

(
γ0 − 1

2

)]
. (16)

This gives a constraint equation

g(γ0, γ
′

0,Ωm,0,Ωk,0) = 0. (17)

So, for any given background parameters Ωm,0 and Ωk,0, the value
of γ ′

0 can be determined by that of γ0. For the sake of simplicity,
we will only consider the case of a spatially flat universe in this
Letter (Ωk = 0). Thus from Eq. (16), we get

γ ′
0 = (

ln Ω−1
m,0

)−1
[
−Ω

γ0
m,0 + 3

2

4Ω2
m,0 + 2

3Ω2
m,0 + 3

Ω
1−γ0
m,0 − 1

2

+ 3

1 + Ωm,0
(1 − Ωm,0)

(
γ0 − 1

2

)]
. (18)

According to equation f (z = 0) = Ωm,0(0)γ0 , the value of γ0 can
be obtained by solving Eq. (14) numerically for an given value of
Ωm,0. Then plugging this obtained γ0 into Eq. (18), we can get the
value of γ ′

0. The results are shown in Fig. 1. We find, from the
right panel, that the value of γ0 increases from 0.658 to 0.671 for
0.2 � Ωm,0 � 0.35. This suggests that γ cannot really be regarded
as a constant as Ωm varies. Notice that our result is different
from that obtained for the �CDM model where the value of γ0 is
found to decrease from 0.558 to 0.554 for 0.2 � Ωm,0 � 0.35 [29].
This feature of γ0 also provides a distinctive signature for the
DGP model from the �CDM model. From the right panel, we can
see that the γ ′

0 is positive and ranges approximately from 0.035
to 0.042, which is also different from the dark energy models,
the scalar–tensor model and f (R) model. For example for the
wCDM model with Ωm,0 = 0.3, γ ′

0 is negative and quasi-constant
γ ′

0 � −0.02. So, in principle, we can discriminate the DGP model
from the dark energy model merely through the sign of γ ′

0 if we
can have an accurate value of γ ′

0 from the observation data. Now
we will discuss the observational constraints on γ0 and γ ′

0.
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