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We consider ideal fluid and equivalent scalar field dark energy universes where all four known types of
finite time, future singularities occur at some parameter values. It is demonstrated that pressure/energy
density of such quintessence/phantom dark energy diverges in spherically-symmetric spacetime at finite
radius or at the center. This may cause the instability of the relativistic star or black hole in such universe.
The resolution of the problem via the extra modification of the equation of state is briefly discussed.
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1. Introduction

The discovery of the late-time universe acceleration brought
to the playground the number of dark energy (DE) models with
the effective equation of state (EoS) parameter w being very close
to −1 in accordance with observational data. It is known that
phantom/quintessence models lead to the violation of all/some of
the energy conditions. Such models unlike to �CDM with w = −1
lead to the number of quite surprising consequences in the re-
mote future. For instance, phantom DEs are characterized by the
future Big Rip singularity [1]. Some of quintessence DEs bring the
universe to softer finite-time singularity in the future. Such finite-
time future singularities may represent so-called sudden singular-
ities [2,3] or some other singularity types which are classified in
Ref. [4]. It is evident that the presence of finite-time future sin-
gularity in the course of the universe evolution may show up at
the current epoch. One example has been given in Ref. [5] where
it was conjectured that sudden singularity [3] of specific modified
gravity DE may make the relativistic star formation process being
unstable. The resolution of the problem is to introduce the higher-
order curvature terms [3] relevant only at the early universe in
such a way that future singularity disappears.

In the present Letter we consider the specific dark fluid which
contains all four known finite-time singularity types [4]. The refor-
mulation of it as scalar DE model with the same FRW asymptotic
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solutions for the corresponding scalar potentials is also made. The
energy density/pressure of such singular DE may become diver-
gent in the spherically-symmetric spacetime at finite radius or at
the center. In a sense, that is the way the finite-time singularity
manifests itself as singularity of spherically-symmetric space. This
may lead to the instability of relativistic stars (in the same way as
for modified gravity DE model in Ref. [5]) or instability of black
holes located in such dark energy universe. It indicates that num-
ber of current DEs with such properties may be problematic for
realistic description of current accelerating universe. Some extra
EoS modification by the terms relevant at the very early universe
maybe necessary in order to resolve this problem. Such modifi-
cation is discussed briefly in the last section. The reconstruction
method to find the specific dark energy responsible for any singu-
larity of spherically-symmetric space is also presented.

2. Singularities of spherically-symmetric spacetime filled with
dark energy

In Appendix A, the appearance of the finite-time singularities is
shown for the sufficiently realistic dark fluid and scalar field the-
ory. In this section we show that finite-time singularities of dark
energy models in the appendix manifest themselves as radius sin-
gularities of spherically-symmetric spacetime filled with such dark
energies. In [5], it has been pointed that curvature singularity is re-
alized inside the relativistic star for a viable class of f (R)-gravities
(for review of viable, realistic models of that sort, see [6]). Since
such spherically-symmetric solution with a naked singularity is
inconsistent, this result indicates that large star (or even planet)
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could not be formed, or such a relativistic star could be unstable
in such a theory.

It is known that viable modified gravity also shows all four
above types of finite-time singularity [3]. Hence, it is natural to
expect that qualitatively similar situation should be typical for
any dark energy which brings the universe to finite-time singu-
larity. Motivated with these observations, we investigate the EoS
dark fluid, which generates curvature singularity in spherically-
symmetric spacetime. Especially in this section, we investigate the
singularity, which is generated for a finite (non-vanishing) value of
the radius. The singularity at the origin (vanishing radius) is inves-
tigated in the next section.

Let us first consider what kind of (perfect) fluid could generate
a singularity. We concentrate on the singularity which occurs for a
finite radius for spherically symmetric solution. Assume the metric
has the following form:

ds2 = −eν(r) dt2 + e2λ(r) dr2 + r2 dΩ2
2 . (1)

Here dΩ2
2 expresses the metric of two-dimensional sphere. Eq. (1)

expresses the arbitrary spherically symmetric and static space-time
also in the presence of some matter, that corresponds to the inside
of the star or planet. Then the Einstein equations have the follow-
ing form:

1
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dλ
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= κ2ρe2λ, (2)
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Here ρ is the energy density and pr and pa are the radial and
angular components of the pressure. In the following, as for the
usual perfect fluid, we assume pr = pa . If one does not impose
this assumption, we can consider general types of singularity. By
combining (3) and (4) and deleting p = pr = pa , it follows
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The following kind of singularities at r = r0 may be now consid-
ered:

λ(r) = λ0 + λ1 ln
r − r0

r0
+

∞∑
n=2

λn(r − r0)
n−1,

ν(r) = ν0 + ν1 ln
r − r0

r0
+
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n−1. (6)

By substituting (6) into (5), one obtains
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(
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)2λ1

. (7)

Since the l.h.s. in (7) contains only the power (r − r0)
m , where

m is an integer greater than or equal to −2, 2λ1 should be also
an integer greater than or equal to −2. Furthermore, if we assume
2λ1 = −2, from the coefficients of (r −r0)

−2, we find 0 = ν2
1 +e2λ0 ,

which is inconsistent since the r.h.s. is positive definite. Therefore,
2λ1 must be an integer greater than or equal to −1: 2λ1 � −1.
Then from the coefficients of (r − r0)

−2, again, we find

0 = ν1(1 − ν1 + λ1), that is, ν1 = 0 or ν1 = λ1 + 1. (8)

If ν1 = λ1 = 0, there is no singularity and we do not consider this
case. In case ν1 = 0 and 2λ1 = −1, from the coefficients of (r −
r0)

−2 in (7), we find − 1
2r0

− ν2
2 − e2λ0

r0
= 0. In case ν1 = 0 and

2λ1 � 1, one finds

ν2 = − 1

r0
. (9)

The case ν1 �= 0 and ν1 = λ1 + 1 = 1/2 corresponds to the black
hole, where r0 corresponds to the horizon radius and it follows
− 3

2 ν2 + λ2
2 − e2λ0

r0
= 0. In case ν1 = 1 and λ1 = 0, we find 1

r0
−

2ν2 + λ2 = 0. In case ν1 = λ1 + 1 � 3/2, one gets ν1+λ1
r0

− 2ν1ν2 +
ν1λ2 + ν2λ1 = 0.

We now investigate how ρ and p behave. In case ν1 = 0 and
2λ1 = −1, from Eqs. (2) and (3), ρ and p are not singular and
behave as ρ ∼ −p ∼ 1

κ2r2
0

. Therefore there could not be the singu-

larity at r = r0. In case ν1 = 0 and 2λ1 = n � 1, Eqs. (2) and (3) give

ρ ∼ 2ne−2λ0 rn−1
0

κ2(r−r0)n+1 , p ∼ − e−2λ0 rn−2
0

κ2r0(r−r0)n . Here relation (9) is used. Then ρ

and p satisfy the following asymptotic equation of state (EoS):

p ∼ −Cρ
n

n+1 . (10)

Here C is a positive constant. Since ρ and p diverge at r = r0,
there is a curvature singularity at r = r0. As we will see soon, the
EoS (10) corresponds to that in (A.5), which generates Type III sin-
gularity.

In case λ1 = 0 and ν1 = 1 case, we find

ρ ∼ 1

κ2

(
2e−2λ0λ2

r0
+ 1

r2
0

− e−2λ0

r2
0

)
, p ∼ 2e−2λ0

κ2r0(r − r0)
.

Here ρ is finite although p diverges at r = r0. The divergence of
p generates the curvature singularity. The EoS has the following
form: p(ρ − ρ0) ∼ const.

In case 2λ1 = n � 0 and ν1 = λ1 + 1, we find

ρ ∼ ne−2λ0 rn−1
0

κ2(r − r0)n+1
, p ∼ (n + 2)e−2λ0 rn−1

0

κ2(r − r0)n+1
, (11)

and therefore the following asymptotic EoS:

p =
(

1 + 2

n

)
ρ. (12)

The divergence of ρ and p at r = r0 means the curvature singu-
larity. Since the EoS parameter w ≡ p/ρ = 1 + 2/n is positive, the
EoS does not generate any finite-time singularity and corresponds
to α = 1 and −1 + A = 1 + 2/n.

Hence, rather general case with the singularity occurrence for
finite r is investigated. We found here essentially two types of sin-
gularity expressed by the EoS fluid (10) or (12). These EoS fluids
could be compared with the asymptotic EoS dark fluid generating
the finite time singularity (A.3), (A.4), and (A.5). First, one notices
that EoS fluid (12) for finite radius singularity does not exist for
dark fluid generating the finite time singularity as in (A.3), (A.4),
and (A.5). (However, it could be that other dark fluid generating
future singularity shows up radius singularity in this example.)
Eq. (A.3) has a similar structure but in (A.3), w ≡ p/ρ � −1 al-
though w > 1 in (12). The EoS (10) has a similar structure with
those in (A.3) and (A.3) if we identify

α = n

n + 1
. (13)

In case of (A.3), α is negative but in case of (A.5), α is positive.
Then the fluid with EoS (A.5), which generates Type III singularity,
may generate finite radius singularity. Note, however, we do not
have the explicit proof that the fluid generating finite-time singu-
larity always generate finite radius singularity, and vice versa. That
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