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Abstract

We discuss the evolution of holographic hessence model, which satisfies the holographic principle and can naturally realize the equation of state
crossing −1. By discussing the evolution of the models in the w–w′ plane, we find that, if c � 1, whe � −1 and V̇ < 0 keep for all time, which are
quintessence-like. However, if c < −1, which mildly favors the current observations, whe evolves from whe > −1 to whe < −1, and the potential
is a nonmonotonic function. In the earlier time, the potential must be rolled down, and then be climbed up. Considered the current constraint on
the parameter c, we reconstruct the potential of the holographic hessence model.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Numerous and complementary cosmological observations
indicate that the expansion of the universe is undergoing cosmic
acceleration at the present time [1]. This cosmic acceleration
is viewed as due to a mysterious dominant component, dark
energy, with negative pressure. The combined analysis of cos-
mological observations suggests that the universe is spatially
flat, and consists of about 70% dark energy, 30% dust matter
(cold dark matter plus baryons), and negligible radiation. Al-
though we can affirm that the ultimate fate of the universe is
determined by the feature of dark energy, the nature of dark
energy as well as its cosmological origin remain enigmatic at
present. Explanations have been sought within a wide range of
physical phenomena, including a cosmological constant, exotic
fields [2–6], a new form of the gravitational equation [7], etc.
Recently, a new model stimulated by the holographic principle
has been put forward to explain the dark energy [8,9]. Accord-
ing to the holographic principle, the number of degrees of free-
dom of a physical system scales with the area of its boundary.
In the context, Cohen et al. [10] suggested that in quantum field
theory a short distant cutoff is related to a long distant cufoff
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due to the limit set by formation of a black hole, which results
in an upper bound on zero-point energy density. In line with this
suggest, Hsu and Li [8,9] argued that this energy density could
be view as the holographic dark energy satisfying

(1)ρde = 3c2M2
P L−2,

where c is a numerical constant, and MP ≡ 1/
√

8πG is the
reduced Planck mass. If we take L as the size of the current
universe, for instance the Hubble scale H−1, then the dark en-
ergy density will be close to the observed data. However, Hsu
[8] pointed out that this yields a wrong equation of state for
dark energy. Li [9] subsequently proposed that the IR cut-off L

should be taken as the size of the future event horizon

(2)L = Reh(a) = a

∞∫
t

d t̃

a(t̃)
= a

∞∫
a

dã

H ã2
.

Then the problem can be solved nicely and the holographic
dark energy model can thus be constructed successfully. The
holographic dark energy scenario may provide simultaneously
natural solutions to both dark energy problems as demonstrated
in Ref. [9]. The only undetermined parameter c should be fixed
by the observations. If c � 1, which satisfies the original bound
L3ρde � LM2

p , the equation of state (EOS) of dark energy
evolves from the state of w > −1 to w < −1, and the critical
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state of w = −1 must be crossed. If c > 1, the EOS of dark
energy keeps w > −1 [9], which naturally avoided the cos-
mic big rip. However, the original bound L3ρde � LM2

p will
be violated. Since the model we discuss here is only a phenom-
enological framework and it is unclear whether it is appropriate
to tightly constrain the value of c by means of the analogue to
the black hole. As a matter of fact, the possibility of c > 1 has
been seriously dealt with and a modest value of c larger than
one could be favored in the literature [11]. In this Letter, we
consider the general case with c as a free parameter.

For a kind of realized dark energy model, the feature of EOS
crossing −1 cannot be realized by the simple quintessence,
phantom, or k-essence [12]. The quintom is one of the simplest
models with EOS crossing −1, which is the combination of a
quintessence φ1 and a phantom φ2. The hessence is a kind of
simple quintom [13,14], which has the Lagrangian density

(3)Lhe = 1

2
(∂μφ1)

2 − 1

2
(∂μφ2)

2 − V
(
φ2

1 − φ2
2

)
,

where the potential function V (φ2
1 − φ2

2) is free for the mod-
els. Different choice of V follows a different evolution of the
universe. In Ref. [15], the authors found that this kind of mod-
els may be the local effective approximation of the D3-brane
Universe. In Ref. [14], we have proved that the evolution of
potential function can be exactly determined by the EOS of
hessence whe(z) and its evolution w′

he(z). If considered the
holographic constraint in Eq. (1), the EOS of the hessence can
be exactly determined for a fixed c. So the potential function for
the holographic hessence only depends on the parameter c. In
this Letter, we first discuss the evolution of the EOS and poten-
tial of the holographic hessence models for the different c. Then
considered the constraint on c from the current observations, we
reconstruct the potential function of holographic hessence mod-
els.

2. Holographic hessence models

We consider the action

(4)S =
∫

d4x
√−g

(
− R

16πG
+Lhe +Lm

)
,

where g is the determinant of the metric gμν , R is the Ricci
scalar, Lhe and Lm are the Lagrangian densities of the hessence
dark energy and matter, respectively. The Lagrangian density of
hessence is in Eq. (3). One can easily find that this Lagrangian
is invariant under the transformation

(5)φ1 → φ1 cosh(iα) − φ2 sinh(iα),

(6)φ2 → −φ1 sinh(iα) + φ2 cosh(iα),

where α is constant. This property makes one can rewrite the
Lagrangian density (3) in another form

(7)Lhe = 1

2

[
(∂μφ)2 − φ2(∂μθ)2] − V (φ),

where we have introduced two new variables (φ, θ), i.e.,

(8)φ1 = φ cosh θ, φ2 = φ sinh θ.

Consider a spatially flat FRW (Friedmann–Robertson–Walker)
universe with metric

(9)ds2 = dt2 − a2(t)γij dxi dxj ,

where a(t) is the scale factor, and γij = δi
j denotes the flat back-

ground space. Assuming φ and θ are homogeneous, from the
action in (4), we obtain the equations of motion for φ and θ

(10)φ̈ + 3Hφ̇ + φθ̇2 + dV/dφ = 0,

(11)φ2θ̈ + (
2φφ̇ + 3Hφ2)θ̇ = 0,

where H ≡ ȧ/a is the Hubble parameter, an overdot denotes
the derivatives with respect to cosmic time. Eq. (11) implies

(12)Q = a3φ2θ̇ = const,

which is associated with the total conserved charge within the
physical volume due to the internal symmetry [13]. This rela-
tion turns out

(13)θ̇ = Q

a3φ2
.

Substituting this into Eq. (10), we can rewrite the kinetic equa-
tion as

(14)φ̈ + 3Hφ̇ + Q2

a6φ3
+ dV

dφ
= 0,

which is equivalent to the energy conservation equation of the
hessence ρ̇he + 3H(ρhe + phe) = 0. The pressure, energy den-
sity and the EOS of the hessence are

phe = 1

2
φ̇2 − Q2

2a6φ2
− V (φ),

(15)ρhe = 1

2
φ̇2 − Q2

2a6φ2
+ V (φ),

whe =
[

1

2
φ̇2 − Q2

2a6φ2
− V (φ)

] / [
1

2
φ̇2 − Q2

2a6φ2
+ V (φ)

]
,

(16)

respectively. It is easily seen that whe � −1 when φ̇2 �
Q2/(a6φ2), while ωhe � −1 when φ̇2 � Q2/(a6φ2). The tran-
sition occurs when φ̇2 = Q2/(a6φ2). In the case of Q ≡ 0, the
hessence becomes the quintessence model. From the expres-
sion of EOS of hessence, we can find it is only dependant of
the potential function V (φ). If V (φ) is determined, w is also
determined. On the contrary, if w(z) is fixed, the potential func-
tion V (φ) also can be solved. Here we consider the holographic
hessence models, which satisfies the holographic constraint in
Eq. (1). Consider now a spatially flat FRW universe with mat-
ter component ρm (including both baryon matter and cold dark
matter) and holographic hessence component ρhe. The Fried-
mann equation reads

(17)3H 2M2
p = ρm + ρhe,

or equivalently,

(18)
H 2

H 2
0

= Ωm0a
−3 + Ωhe

H 2

H 2
0

.
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