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Abstract

The isotropic coordinate system of Schwarzschild spacetime has several attractive properties similar with the Painlevé–Gullstrand coordinates.
The purpose for us to choose the isotropic coordinates is to resolve the ambiguities of the tunneling picture in Hawking radiation. Based on energy
conservation, we investigate Hawking radiation as massless particles tunneling across the event horizon of the Schwarzschild black hole in the
isotropic coordinates. Because the amplitude for a black hole to emit particles is related to the amplitude for it to absorb, we must take into account
the contribution of ingoing solution to the action, ImS = ImSout − ImSin. It will be shown that the imaginary part of action for ingoing particles
is zero (ImSin = 0) in the Painlevé–Gullstrand coordinates, so the equation ImS = ImSout − ImSin is valid in both the isotropic coordinates and
the Painlevé–Gullstrand coordinates.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is known that nothing can escape from a black hole at
classical level, but particles can tunnel though the horizon if
we take into account the effect of quantum mechanics. By
calculating the response of quantum field to collapse geome-
try, Hawking radiation was derived: black holes radiate ther-
mally with the temperature T = κ

2π
, κ is the surface gravity

of black holes [1]. Recently Parikh and Wilczek provide a
short, direct semi-classical derivation of black hole radiance
[2–4]. A new method was introduced to calculate the emission
rate in the Painlevé–Gullstrand coordinate system well-behaved
at the horizon. Based on energy conservation and the self-
gravitational interaction of the radiation, it was shown that the
radiation spectrum can not be strictly thermal and the result is
consistent with an underlying unitary theory. Many authors also
study this problems in dynamics background and have done ex-
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cellent works [5–13]. In this Letter, we attempt to extend this
method to Schwarzschild black holes in isotropic coordinates.
It was pointed out in [14] that there are closely correlation be-
tween the amplitude for a black hole to emit particles and the
amplitude for it to absorb. With this idea, we study the Hawk-
ing radiation in Schwarzschild black holes in dynamical back-
ground.

2. Tunneling

To describe the tunneling picture, first we need to find a
coordinate well-behaved at the event horizon. In this Letter,
we choose the isotropic coordinates to describe across-horizon
phenomena. The isotropic coordinates have several attractive
properties similar with the Painlevé–Gullstrand coordinates:
There are non-singular at the horizon, the time direction is a
Killing vector and the isotropic coordinates satisfy Landau’s
condition of the coordinate clock synchronization

(1)
∂

∂xj

(
− g0i

g00

)
= ∂

∂xi

(
−g0j

g00

)
(i, j = 1,2,3).
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The Schwarzschild metric is

(2)ds2 = −
(

1 − 2M

r

)
dt2 + 1

1 − 2M
r

dr2 + r2 dΩ2.

The isotropic coordinates are obtained from the Schwarzschild
coordinates via the transformation [15,16]

(3)r = ρ

(
1 + M

2ρ

)2

,

then the isotropic coordinates are derived

(4)ds2 = −
(

ρ − M
2

ρ + M
2

)2

dt2 +
(

ρ + M
2

ρ

)4(
dρ2 + ρ2 dΩ2).

We can see there is non-singular at the horizon r = 2M , where
M is the mass of black hole. The property of the spacetime
is static. On the assumption that dθ = dϕ = 0, the radial null
geodesics of massless particles are given by

(5)ρ̇ ≡ dρ

dt
= ± (ρ − M

2 )ρ2

(ρ + M
2 )3

,

where the upper (lower) sign in Eq. (5) corresponds to outgoing
(ingoing) geodesics, under the implicit assumption that time t

increases towards the future. In tunneling picture, a pair of vir-
tual particles is spontaneously created just inside (outside) the
horizon. The positive energy virtual particle can tunnel through
the horizon and materialize as a real particle to escape to infin-
ity, while the negative energy particle is absorbed by the black
hole. Based on energy conservation, the mass of the black hole
must go down as it radiates. If we fix the total mass and allow
the hole mass to fluctuate and consider the particle as an sphere
shell of energy ω, the line element can be obtained by consid-
ering the self-gravity effect [17]

ds2 = −
(

ρ − (M−ω)
2

ρ + (M−ω)
2

)2

dt2

(6)+
(

ρ + (M−ω)
2

ρ

)4(
dρ2 + ρ2 dΩ2),

and Eq. (5) becomes

(7)ρ̇ ≡ dρ

dt
= ± (ρ − (M−ω)

2 )ρ2

(ρ + (M−ω)
2 )3

.

Based on Eq. (3), the equation ρ = M
2 corresponds to r = 2M ,

we can see the event horizon and the infinite red-shift surface
coincide with each other in the isotropic coordinates so that the
semi-classical WKB approximation can be used, then the tun-
neling probability can be expressed as

(8)Γ ∼ e−2 ImS.

In [14], the Feynman path-integral was used to derive the ther-
mal radiation emitted by black holes. It was shown that the ratio
of emission and absorption probabilities for energy E is

(9)Pemission = exp

(
− E

TH

)
Pabsorption.

Based on Eqs. (8) and (9), we obtain

(10)Γ ∼ exp
(−2(ImSout − ImSin)

) = exp

(
− E

TH

)
,

then we can see the ImS are composed of two parts

(11)ImS = ImSout − ImSin.

The imaginary part of the action for the outgoing particles can
be written as

(12)ImSout = Im

ρout∫
ρin

pρ dρ = Im

ρout∫
ρin

pρ∫
0

dp′
ρ dρ,

where ρin = M
2 and ρout = M−ω

2 . Based on the Hamilton’s

equation ρ̇ = dH
dpρ

|ρ = d(M−ω)
dpρ

, then Eq. (12) becomes

(13)ImSout =
M−ω∫
M

M−ω
2∫

M
2

dρ

ρ̇
dH.

Inserting Eq. (7) into Eq. (13), we obtain

(14)ImSout =
ω∫

0

M−ω
2∫

M
2

(ρ + (M−ω′)
2 )3

(ρ − (M−ω′)
2 )ρ2

dρ d(−ω′).

It is obvious that ρ = M−ω′
2 is a single pole in Eq. (14), then

we can evaluate the integral by deforming the contour around
the pole. We must pay attention to a subtle point which was
pointed out in [18] that when one deforms the contour based
on Eq. (3), the semi-circular contour in Eq. (14) gets trans-
formed into a quarter circle so that one gets i π

2 Residue rather
than iπ Residue. In detail, we make the change of variables
r − 2M = εeiθ and insert it into Eq. (3), then

(15)ρ + M + M2

4ρ
= 2M + εeiθ .

The solution is

(16)ρ = 1

2

(
M + εeiθ ± (

2M + εeiθ
) 1

2
√

εe
iθ
2
)
.

In the limit ε → 0, Eq. (16) becomes ρ − M
2 = ±√

2Mεe
iθ
2 .

Now it is obvious that the semi-circle contour gets transformed
into a quarter circle, then we obtain

(17)ImSout =
ω∫

0

2π(M − ω′) dω′ = 2πω

(
M − ω

2

)
.

In the same way, we can obtain the imaginary part of action for
the ingoing particles

ImSin = −
ω∫

0

M−ω
2∫

M
2

(ρ + (M−ω′)
2 )3

(ρ − (M−ω′)
2 )ρ2

dρ d(−ω′)

(18)= −2πω

(
M − ω

2

)
.
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