
Agricultural and Forest Meteorology 152 (2012) 223– 232

Contents lists available at SciVerse ScienceDirect

Agricultural  and  Forest Meteorology

jou rn al h om epa g e: www.elsev ier .com/ locate /agr formet

Efficient  stabilization  of  crop  yield  prediction  in  the  Canadian  Prairies

Luke  Bornn ∗, James  V.  Zidek
Department of Statistics, University of British Columbia, 333-6356 Agricultural Road, Vancouver, BC, Canada V6T 1Z2

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 11 February 2011
Received in revised form 13 July 2011
Accepted 16 September 2011

Keywords:
Crop yield prediction
Crop water stress index
Canadian Prairies
Bayesian
Smoothing
Spatial correlation

a  b  s  t  r  a  c  t

This  paper  describes  how  spatial  dependence  can  be  incorporated  into  statistical  models  for  crop  yield
along with  the dangers  of ignoring  it.  In particular,  approaches  that  ignore  this  dependence  suffer  in  their
ability  to  capture  (and  predict)  the  underlying  phenomena.  By  judiciously  selecting  biophysically  based
explanatory  variables  and  using  spatially-determined  prior  probability  distributions,  a Bayesian  model
for crop  yield  is  created  that  not  only  allows  for increased  modelling  flexibility  but  also  for  improved
prediction  over  existing  least-squares  methods.  The  model  is  focused  on  providing  efficient  predictions
which  stabilize  the  effects  of  noisy  data. Prior  distributions  are  developed  to  accommodate  the spatial
non-stationarity  arising  from  distinct  between-region  differences  in  agricultural  policy  and  practice.  In
addition,  a range  of possible  dimension–reduction  schemes  and  basis  expansions  are  examined  in  the
pursuit  of improved  prediction.  As  a result,  the  model  developed  has improved  prediction  performance
relative  to  existing  models,  and  allows  for  straightforward  interpretation  of  climatic  effects  on  the  model’s
output.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

This paper presents a method for forecasting wheat crop yields
in the Canadian Prairie Provinces—a challenging task due to dra-
matic variability in yield over space and time. Its importance,
however, should not be understated: wheat is one of Canada’s pri-
mary exports, accounting for 12% of wheat and barley traded in
the world market. Thus variation in yield has considerable impact
both within and beyond Canadian borders (Schmitz and Furtan,
2000). Enabling effective crop management, handling, and market-
ing thus requires accurate predictions of crop yield that account for
and explain these variations. For example, these forecasts are help-
ful in setting insurance premiums and futures prices as well as in
managing grain transport. Since spatial and temporal climate vari-
ability affect crop yields (Stone and Meinke, 2005; Potgieter et al.,
2006), a crop yield forecasting method must include climate as an
essential component if it is to be successful.

Several process-based models have been successfully used for
crop yield prediction including the Agricultural Production Sys-
tems Simulator (APSIM) in Australia (Keating et al., 2003) as well
as a web-based tool developed by the United States’ Southeast
Climate Consortium (Jagtap et al., 2002). These process-based mod-
els typically employ tunable and user adjustable deterministic
and stochastic models to simulate biological and physical pro-
cesses related to crop yield. While these models use knowledge
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pertaining to the individual processes, they often require signifi-
cant input from the user, including a wide range of meteorological
and environmental variables which may  be difficult or expensive
to obtain.

In contrast to the above, traditional statistical techniques are
purely empirical. While these methods may  result in accurate pre-
dictions, they typically lack the interpretability of process-based
models (Barnett, 2004). As a result of this criticism, recent years
have seen the development of statistical models that also pro-
vide interpretation of the underlying biophysical process (see, for
example, Stephens (1995),  Hansen et al. (2002)). One such process
knowledge-based approach involves water stress indices (Potgieter
et al., 2005, 2006; Qian et al., 2009a,b), the result of which has
been of tremendous use and benefit to stakeholders, allowing
for prediction and understanding of crop yield anomalies. While
these models have improved the prediction of crop yield, there
exists scope for improvement through (a) providing an efficient
dimension reduction of explanatory variables; (b) accounting for
uncertainty in the estimated technology trend; (c) modelling spa-
tial correlation between regions.

This paper describes the results of a project coordinated by Agri-
culture and Agri-foods Canada to develop a model that explains
and predicts wheat yield and its relation to climatic variables. With
plans for an online implementation in the future, efficiency was
required as a feature of the model, as was  the ability to stabi-
lize the effects of noisy measurements. Building on earlier work,
we employ a crop water stress index (SI) to provide explana-
tory power for a new crop yield predictor (De Jong and Bootsma,
1996). To improve prediction over existing approaches, we  extract
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Fig. 1. Mean residuals from model (1). We  observe that the model residuals are
spatially correlated.

a sensitive yet low-dimensional summary of this stress index,
comparing various alternatives and bases before ultimately select-
ing principal components. We  then demonstrate its improved
prediction performance compared to currently used windowed
average approaches. In contrast to previous work which mod-
els each agricultural region separately, we create a unified model
that allows strength to be borrowed from adjacent and nearby
regions, thus stabilizing both inference and prediction. By employ-
ing a spatially-motivated context-specific prior distribution on the
parameters of interest, we account for and use spatial correlation
between sites while smoothing and consequently improving pre-
dictions.

Following this introduction, Section 2 describes the crop yield
forecasting problem and available data. This section works through
a series of successively improved models, eventually leading to
a Bayesian model in Section 2.3 which jointly models all regions
simultaneously. Model testing and diagnostics are explored in
Section 3. Lastly, Section 4 concludes the work.

2. Materials and methods

This paper models crop yield in the Canadian Prairies as a func-
tion of climate-related explanatory variables. The data include
annual wheat yields (in bushels per acre) along with associated
measurements of a crop water stress index and growing degree day
(both described later) for 40 agricultural regions (plotted in Fig. 1)
across the Canadian Prairies from 1976 to 2006. The agricultural
regions are those used in the 2006 Canadian Census of Agricul-
ture, through which the data are also obtained, and are determined
from climate and soil information. For each of the 31 years and
40 regions, yield is an aggregated average across the region. Like-
wise, stress index and growing degree day are calculated regionally,
but on a daily basis throughout the growing season (April 1 to
September 30).

2.1. Incorporating soil water

The well recognized influence of soil water on crop yields dic-
tates its inclusion in any yield prediction model (De Jong and
Bootsma, 1996). However, due to the time-consuming and costly
process of measuring soil water content, in practice its effects
must be inferred from more widely available environmental vari-
ables such as precipitation, temperature, and easily measured crop
and soil-related factors. A suite of models have been developed
which attempt to understand soil water availability in the con-
text of these environmental variables. Beginning with simple water
balance approaches that balance precipitation and soil water stor-
age with evapotranspiration and water runoff, these models have
increased in their complexity over the years (Thornthwaite, 1948;
De Jong and Bootsma, 1996). For the reasons given below we  focus

on budget models, which build on the premise that above a certain
threshold (called the ‘field capacity’), soil cannot absorb any more
water and therefore any additional water is drained off through
runoff or drainage. Also, if the soil water fails to be replenished
through precipitation, irrigation, or other sources, the soil reaches
a point where plant roots are no longer capable of uptaking water.
This stage is known as the ‘wilting point’.

Evapotranspiration, which describes the sum of evaporation and
plant transpiration, measures the water lost from plants, soil, and
other land surfaces into the atmosphere. There are two key compo-
nents in the budget model, potential evapotranspiration (PET) and
actual evapotranspiration (AET). PET represents the atmospheric
demand for evapotranspiration; specifically, it accounts for the
energy available to evaporate water and transport it into the lower
atmosphere. AET is the actual water content available for evapo-
ration and transpiration, and relies on plant physiology and soil
characteristics for its calculation. When the soil has ample water,
the actual evapotranspiration (AET) can equal the PET. However
when the soil is not at its field capacity, AET will be less than PET.
More details on these concepts and soil science in general may be
found in Brady et al. (1999).

Budget models are straightforward to implement since they
require a minimum of meteorological data as well as soil field
capacities and wilting points. While more advanced models have
been built which include soil hydraulic characteristics and more
complex relationships between soil, plant, and meteorological sys-
tems, these models require considerably more information from
the user, including detailed soil and plant characteristics. Because
of the additional variables required by these models, we  employ a
budget model in the remainder of this work. Our model uses crop
water stress index (SI) over agricultural land, defined as 1-AET/PET
(Qian et al., 2009a,b). This quantity will be near 0 when water is
plentiful in the soil and near 1 when the plant is stressed by a
lack of available moisture. Intuition might suggest directly includ-
ing precipitation, temperature, soil and plant information into the
model. However, doing so would add a large number of variables,
especially considering that many of these variables are observed
for every day of the growing season. Using the SI instead provides
an economical reduction in the dimensionality of the description
space in a way  that respects the biophysical processes involved in
soil water movement and availability.

2.1.1. Predicting yield with SI
We  begin by detailing the process of fitting a regression model

to crop yield using least squares (LS). First let yj,t, j = 1, . . .,  40 be
the yield from region j for years t = 1976, . . .,  2006. Since SI is a
daily value, we  create an annual average for each year and region;
let sij,t denote the vector of these means in year t for each region
j. We begin by fitting a common regression model to all regions,
specifically

yj,t = ˇ0 + ˇ1t + ˇ2sij,t + �j,t . (1)

Here �j,t for year t and region j represents a combination of model
and measurement error. While previously developed statistical
models for crop yield account for a technology trend by first fit-
ting a regression on time and then modelling the residuals, such
approaches yield little understanding about the uncertainty asso-
ciated with forecasting. In particular, while forecasts that use
detrended data may  be similar, their associated variances will be
biased as uncertainty in the trend model is ignored. In fact, to
properly account for all sources of variability the technology trend
should be an integral part of any forecasting model.

To begin, note that the simple model in Eq. (1) relies on only 3
parameters—all regions are described by the same equation. The
validity of inference for such a model relies on assumptions includ-
ing for instance that the errors �j,t are stochastically independent
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