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Statistical entropy of three-dimensional q-deformed Kerr–de Sitter space
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Abstract

A quantum deformation of three-dimensional de Sitter space was proposed in hep-th/0407188. We use this to calculate the entropy of Kerr–
de Sitter space, using a canonical ensemble, and find agreement with the semiclassical result.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Black holes are known to carry entropy proportional to their
horizon area [1,2]. One of the main successes of string the-
ory has been to provide a microscopic interpretation of this
entropy [3], at least in certain cases. Since the semiclassical
arguments for this horizon area are not specific to horizons sur-
rounding black holes, they should also apply to cosmological
horizons [4–6]. It would be of great interest to have microscopic
state-counting arguments for such situations.

The natural place to investigate cosmological horizons is
de Sitter space, the maximally symmetric spacetime with con-
stant positive cosmological constant Λ [7–11]. Current obser-
vations suggest that our universe is now Λ-dominated, and thus
asymptotically de Sitter in the future [12–14].

Following the great success of the AdS/CFT correspon-
dence [15], there have been suggestions of a dual conformal
field theory, living on the conformal boundary of de Sitter
[8,16]. Unlike the anti-de Sitter case, this boundary is spacelike,
and time-translation in the bulk corresponding to scale transfor-
mation on the boundary [17–19]. It also has two disconnected
components, and it is not clear whether the boundary theory
should live on one or both [7].
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Since the area of an observer’s cosmological horizon is fi-
nite, de Sitter has finite Bekenstein–Hawking entropy. This
immediately causes problems with finding a state counting in-
terpretation, since the isometry group is non-compact [20] and
hence only has infinite-dimensional unitary representations.
This apparent contradiction is even stronger if the dimension
of the Hilbert space is also finite [21–23]. It has been suggested
that the correct inner product is not the naive local one, which
changes the notion of unitarity [24,25]. (Another approach is
given in [26,27].)

Some of these difficulties might be tamed by noncommuta-
tive geometry [28,29]. The approach used in [30] is to deform
the group of isometries into a quantum group. This was further
studied in [31–33] and is the approach followed here. Quantum
deformations of the Lorentz group in various dimensions are
studied in [34,35] and in [36,37].

The plan of the Letter is as follows. Section 2 of this Letter is
mostly a recap of [30,31]. Section 3 contains a novel calculation
of the entropy. The interpretation of the result is discussed and
concluding remarks made in Section 4.

2. q-deformed de Sitter space

Three-dimensional de Sitter space can be defined as the hy-
perboloid −(x0)2 + ∑3

i=1(x
i)2 = �2 in Minkowski space. This

is a spacetime of constant curvature, representing a vacuum
with positive cosmological constant Λ = 1/�2.
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The isometries of this hyperboloid are just the rotations and
boosts of the embedding space, which generate the Lorentz
group SO(3,1). We will focus on the Lie algebra, rather than
the global properties of the group. The complex combinations
of generators Xi = Ji + iKi (left) and X̄i = Ji − iKi (right)
each obey the su(2) commutation relation [Xi,Xj ] = iεijkXk ,
and commute with each other.

In the complex algebra, the fact that J and K are Hermitian
is encoded in the star operation J � = J , K� = K , and so X�

i =
X̄i . The use of this star-structure specifies that we are dealing
with the non-compact real form so(3,1). We will also use the
basis given by:

L0 = X1, L̄0 = −X̄1,

L1 = X2 − iX3, L̄1 = −X̄2 − iX̄3,

L−1 = −X2 − iX3, L̄−1 = X̄2 − iX̄3.

These generators form the n = 0,±1 part of the Virasoro alge-
bra [Lm,Ln] = (m − n)Lm+n, but with real form

(1)L�
n = −L̄n.

A field in de Sitter space will transform under isometries
in some representation of this algebra. Since the group is non-
compact, there are no finite-dimensional unitary representa-
tions, thus any field has infinitely many modes. For a field of
mass m > � the representation is in the principal series [38–40].

It was proposed in [30] that the Lie algebra of isometries
should be deformed to a quantum group (Hopf algebra) [41,
42]. Taking the deformation parameter to be a root of unity

q = e2πi/N

limits the dimension of an irreducible representation to at
most N . In particular, the deformed versions of non-compact
algebras can have finite-dimensional unitary representations,
which become infinite in the classical limit q → 1 [43,44]. This
was done explicitly for dS2’s so(2,1) principal series in [30].
The relation between N and gravity quantities will be fixed mo-
mentarily.

In dS3 however there is a complication which does not arise
in dS2: even the deformed algebra cannot have non-trivial uni-
tary representations [31]. Suppose |ψ〉 is an eigenstate of L0
and L̄0 in a unitary representation. Then the state L±1|ψ〉
has zero norm, since L�

1 does not lower the eigenvalue L1
raised. So the representation must be trivial. (In the infinite-
dimensional principal series representation, such a |ψ〉 lies out-
side the Hilbert space.)

Similar problems with unitarity are found in [37] in at-
tempting to deform this and higher Lorentz groups, and multi-
parameter families of deformations were studied in [36].

These algebraic problems are related to the problem of defin-
ing an inner product for fields on de Sitter space, which in turn
induces a particular adjoint. The standard local Klein–Gordon
one induces (1). Witten proposed to use the path integral from
asymptotic past to future, with an extra insertion of CPT [24].
Choosing the parity operation to be Px3 = −x3, [31] showed
that this induces

(2)L†
n = −Ln, L̄†

n = −L̄n

or X
†
1,2 = −X1,2, X

†
3 = X3 and the same on the right. This

amounts to using the (non-compact) split real form su(1,1) ⊕
su(1,1), instead of so(3,1).1

With this real form, the natural deformation of the algebra to
use is

Uq

(
su(1,1)

) ⊕ Uq

(
su(1,1)

)
.

The quantum group Uq(su(1,1)) has unitary representations
of dimension N . These are representations without highest
weight, having (X±)N �= 0, and are called cyclic representa-
tions (B in [41]). It was shown in [30] that the parameters of
a cyclic representation can be chosen so as to give the same
Casimirs as the classical su(1,1) = so(2,1) principal series,
and in [31] that a left–right product of two cyclic representa-
tions has the correct Casimirs to match the so(3,1) principal
series.

The geodesics lying in the embedding space’s 0–1 plane are
the north and south poles of de Sitter space. The south pole is
r = 0 in the static coordinate patch, whose metric is

(3)ds2 = −
(

1 − r2

�2

)
dt2 + dr2

1 − r2/�2
+ r2 dφ2.

The generator of time translations here is

−i∂t = K1 = −i(L0 + L̄0).

At the antipodal point −xμ this generates instead reverse time
translation. (This is the standard situation for a thermofield dou-
ble, the canonical example of which is Rindler space.)

In these coordinates the horizon is at r = �. It has Hawking
temperature T = 1/2π which can be derived most transpar-
ently for our purposes by tracing over modes living behind the
horizon (which have negative frequency) to produce southern
density matrix [25]

ρsouth ∝ e−βK1 .

In the classical (principal series) case this operator has a
continuous spectrum, while a single irreducible cyclic repre-
sentation of the quantum group has eigenvalues spaced approxi-
mately 1/� apart. So it was proposed in [31] that the appropriate
quantum representations are not the cyclic representations B, of
dimension N , but rather reducible representations

⊕N
i=1 Bi of

dimension N2. There is one phase parameter of the cyclic repre-
sentation not fixed by matching the principal series’s Casimirs,
and the sum is over different choices of this phase. In the result-
ing twisted representation, −i(L0 + L̄0) has eigenvalues spaced
∼ 1/N�, thus tending to a continuum in the classical limit.

The natural choice for N is the de Sitter radius in Planck
units: we set

N = �

G
.

The maximum eigenvalue of J1, the generator of rotations about
the south pole, is of order N , so this can be viewed as allowing

1 Throughout this Letter we use � for the so(3,1) involution (1), and † for
this one.
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