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a b s t r a c t

The main objective of this work is to give an answer to the question: is it sufficient to consider only the
second-order fiber orientation tensor as microstructure variable describing the orientation distribution
of short-fiber reinforced composites (SFRCs) in the prediction of effective elastic properties? This
question is addressed in the context of SFRCs on the one hand with an overall transversal symmetric
orientation distribution of fibers and, hence, effective transversally isotropic properties, and on the other
hand with experimentally determined microstructure data using micro-computed tomography. Applying
the maximum entropy principle, it is shown, how the fiber orientation distribution function (FODF) can
be estimated by relying on the second and/or the fourth-order orientation tensor, only. Both estimates
are used within the self-consistent and the interaction direct derivate approach to calculate the effective
linear elastic properties. It is shown, that the predicted stiffness tensors significantly depend on the
estimation of the FODF. Relative deviations of up to 20% in terms of stiffnesses and up to 46% in terms of
Young's modulus are observed. For the experimentally determined microstructure, small deviations of up
to 4.3% are found.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The mechanical properties of composite materials like short-
fiber reinforced composites (SFRCs) are crucially dominated by
their microstructure. An essential attribute of their microstructure
is the orientation distribution of the fibers. The one point statistics
of the fiber orientations can be described with fiber orientation
distribution functions (FODFs) or, equivalently, with an infinite set
of orientation tensors [28]. Kanatani [20] distinguishes three kinds
of orientation tensors, which are also called fabric tensors,
orientation-moments or order parameters (see, e.g., Gurp [15] and
Onat and Leckie [26]).

Second-order orientation tensors frequently appear in literature
dealing with composite materials [1,3,4,14,17,18]. Bernasconi et al.
[4]; for example, analyzed the fiber orientation distribution of a
SFRC using two methods: the first method is based on the obser-
vation of the elliptical footprints of the fibers on polished cross
sections. The second method starts from a micro-computed to-
mography (mCT) scan of the material, which then is examined by an

image analysis procedure. The results of both methods are
compared by means of the second-order orientation tensor.

Second-order orientation tensors are usually the only micro-
structure related output variable of mold flow simulation packages
[13,31]. Dray et al. [14] calculated the thermoelastic properties for
an injection molded SFRC. This was done using experimentally
determined second and fourth-order orientations tensors, and,
additionally, second-order orientation tensors predicted by mold
flow simulation. In the latter case, it was necessary to calculate the
fourth-order orientation tensor applying closure algorithms. The
authors demonstrated the dependence of the thermoelastic prop-
erties on the applied closure algorithm (see, e.g., [10]).

Many closure algorithms have been proposed in literature, as,
e.g., the linear and the quadratic closure [2], the orthotropic fitted
closure [11] and the invariant based optimal fitted closure [10]. The
linear and the quadratic closure are directly based on the second-
order orientation tensor. The orthotropic fitted closure and the
invariant based optimal fitted closure are based on flow data from
the calculation of the orientation distribution function. The accu-
racy of the approximation of the non-fitted closures is only
acceptable in particular cases. The fitted closures utilize additional
information or assumptions to calculate their predictions.

Further, second-order orientation tensors play a role in the
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homogenization of, e.g., SFRC using full-field approaches. Müller
et al. [23] compared predictions of the elastic properties of full-field
andmean-field homogenization approaches bymeans of artificially
generated short-fiber microstructure data. The microstructure
generation process was based only on the second-order orientation
tensor.

Hence, the second-order orientation tensor is commonly used
and a well established quantity describing approximately the
microstructure of certain composites. However, the question re-
mains open, whether the second-order orientation information is
sufficient for the prediction of elastic properties. In the present
work, this question is addressed for the special case of transversal
symmetric fiber orientation distributions.

The outline of the present paper is as follows: in Section 2, the
properties of fiber orientation distribution functions (FODFs) and a
classification of different kinds of orientation tensors are described,
especially, with a focus on orientation tensors with transversal
symmetry. Section 3 deals with the estimation of the FODF based
on leading orientation tensors. In Section 4, the theoretical back-
ground of the applied homogenization methods, the self-consistent
(SC) and the interaction direct derivative (IDD) approach is given. In
Section 5, the estimations of the FODFs and the homogenization
results are presented for model microstructures and mCT data.
Conclusions are given in Section 6.

Notation. A direct tensor notation is preferred throughout the
text. If tensor components are used, then Latin indices are used and
Einstein's summation convention is applied. Vectors and second-
order tensors are denoted by lowercase and uppercase bold let-
ters, e.g., a and A, respectively. Additionally, second and higher-
order tensors are written as A〈a〉, where a indicates the tensor
rank. The composition of two second-order or two fourth-order
tensors is formulated by AB and AB. A linear mapping of second-
order tensors by a fourth-order tensor is written as A ¼ ℂ½B�. The
scalar product is denoted by A$B. We define the composition
operator , via ðA,BÞ½C� ¼ ACB, the dyadic product operator 5 as
ðA5BÞ½C� ¼ ðB,CÞA, and the contraction operator E$F with
ða5bÞ$ðℂEa5bFÞ ¼ ða5aÞ$ðℂ½b5b�Þ. Higher-order dyadic prod-
ucts of the same tensor are indicated by n5a ¼ n5/5n, where
n5a is a tensorwith the rank a times the rank of n. Arbitrary vectors
a and b, second-order tensors A, B and C and the fourth-order
tensor ℂ are used in the foregoing definitions. The identity on
symmetric second-order tensors is denoted by Is. Completely
symmetric and traceless, i.e. irreducible tensors are denoted with a
prime, e.g., A0.

2. Fiber orientation distribution function

2.1. Properties of fiber orientation distribution functions

Throughout this work, the terms “orientation” or “direction” in
context of fiber orientations are both describing an axis n of a
straight fiber with a constant diameter d and circular profile. The
FODF specifies the volume fraction dv/v of all fibers with a certain
orientation n (see, e.g., Zheng and Zou [33]):

dv
v

ðnÞ ¼ f ðnÞ dS: (1)

The quantity dS is a surface element of the unit sphere
S :¼ fn2ℝ3 :k n k¼ 1g in the three-dimensional Euclidean space
ℝ3. In spherical coordinates, dS ¼ sinðwÞ d4 dw=ð4pÞ holds with the
polar and azimuthal angles w and 4. Generally, an FODF is
normalized and non-negative:

Z
S

f ðnÞdS ¼ 1; f ðnÞ � 0cn2S: (2)

Since fibers are not truly directional, f ðnÞ ¼ f ð�nÞ holds. FODFs
with this property are called to be centrosymmetric [33] or antip-
odal symmetric.

2.2. Empirical fiber orientation distribution function

For a set of N equal weighted fiber orientations n, the empirical
FODF is defined as

f ðnÞ ¼ 1
N

XN
a¼1

dðn� naÞ: (3)

Herein, dðn� naÞ is the Dirac delta distribution.

2.3. Orientation tensors

Kanatani [20] distinguished three different kinds of orientation
tensors. The orientation tensors of the first kind are moment ten-
sors of the dyadic products of the direction n:

N〈b〉 ¼
Z
S

f ðnÞn5bdS; (4)

whereas, n5b specifies a ðb� 1Þ-times tensor product. In case of the
empirically defined FODF, the first kind orientation tensors result to

N〈b〉 ¼
1
N

XN
a¼1

n5b
a : (5)

Orientation tensors of the first kind are entirely symmetric.
Since the FODF is an even function, they are only of even rank. A
contraction of a b-order tensor reduces the rank and delivers the
orientation tensor N〈b�2〉:

N〈b〉½I� ¼ N〈b�2〉 cb2f2;4;6;…g: (6)

Hence, the orientation tensors of the first kind are not linearly
independent.

Since the orientation tensors of the second kind do not play a
role in this work, the reader is referred to [20] for details. The
orientation tensors of the third kind are defined as the entirely
symmetric and traceless part of the first-kind orientation tensors:

D〈a〉 ¼
�
N〈a〉

�0: (7)

These tensors are referred to as irreducible tensors. It can be
shown, that they are linear independent from each other [20].

2.4. Irreducible orientation tensors of second and fourth-order with
transversal symmetry

An irreducible orientation tensor of second-order D〈2〉, which
possesses a transversal symmetry with respect to the e3-axis of an
orthonormal basis system {e1,e2,e3}, can be fully described with one
independent parameter x:

D〈2〉 ¼ �1
2
xðe15e1 þ e25e2Þ þ xe35e3: (8)

An irreducible fourth-order tensor D〈4〉 with a transversal
symmetry with respect to the e3-axis can also be fully described
with one parameter [8]. Using the normalized Voigt notation, as
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