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a b s t r a c t

Understanding the effects of interfacial properties on effective elastic properties is of great importance in
materials science and engineering. In this work, we propose a theoretical framework to predict the
effective moduli of three-phase heterogeneous particulate composites containing spheroidal particles,
soft interfaces, and a homogeneous matrix. We first derive the effective moduli of two-phase repre-
sentative volume elements (RVEs) with matrix and spheroidal inclusions using the variational principle.
Subsequently, an analytical model considering the volume fraction of soft interfaces around spheroidal
particles is presented. The effective moduli of such three-phase particulate composites are eventually
derived by the generalized self-consistent scheme. These theoretical schemes are compared with
experimental studies, numerical simulations, and theoretical approximations reported in the literature to
verify their validity. We further investigate the dependence of the effective elastic modulus on the
interfacial properties and the geometric characteristics of anisotropic particles based on the proposed
theoretical framework. Results show that the interfacial volume fraction and the effective elastic
modulus of particulate composites are strongly dependent on the aspect ratio, geometric size factor,
volume fraction, and particle size distribution of ellipsoidal particles.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Interfaces interacted by anisotropic particles are crucial com-
ponents in a variety of particulate materials like polymer, colloidal,
ceramic, and cementitious composites [1e4]. Understanding the
effects of interfacial characteristics on effective elastic properties as
average features by homogenization that well reflect the macro-
scopic mechanical responses of particulate composites, is a prob-
lem of great interest in materials research & development [3e7].
Specifically, the estimation of effective moduli of particulate com-
posites is of prime importance to better capture the behaviors of
composites and to evaluate the success of their design. In the
present work, we focus on spheroids as shape-anisotropic particles
over a broad range of aspect ratios with widespread applications in

specific materials [1,4e6].
It has been experimentally observed by several imaging equip-

ment that interfaces as a weak link have a complex network that
adjacent interfaces possess an overlap potential in some particulate
composites, such as cementitious, ceramic, and colloidal compos-
ites, where the formation of interfaces normally attributes to the
packing of discrete grains against aggregate or wall surfaces,
namely, the so-called “wall” effect [8e10]. This also gives rise to the
physical natures of a relative high porosity and low rigidity for
interfaces around aggregates. As such, interfaces are usually viewed
as a compliant interphase (i.e., soft interfaces) between inclusions
and matrix [2,4,7e9], as well as particulate composites as a three-
phase composite structure consist of inclusions, soft interfaces, and
matrix.

Over the past decades, the researches for effective elastic
properties of three-phase particulate composites have attracted
much attention, especially for the three-phase composites con-
taining interfaces. The pioneering work was from Christensen and
Lo [11] that applied the generalized self-consistent scheme [12] to
study the effective shear modulus of three-phase composites with
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spherical inclusions. Thereafter, many seminal empirical and
theoretical formulae have been proposed to predict effective
moduli of three-phase composites, such as bounds models [13,14],
Mori-Tanaka scheme [15], differential effective medium approxi-
mation [16], generalized self-consistent scheme [12,17], and series
expansions [18], and other effective mediummethods. Fu et al. [19]
and Wang and Pan [20] have well summarized the existing studies
in this area, interested readers may refer to the two reviews. Also,
three kinds of interfacial model are often used to simulate the
properties of interfaces in those effective medium methods: the
linear-spring model, interface stress model, and interphase model
[7]. The first two models assume interfaces occupying a zero vol-
ume in composites that is essentially a two-phase composite
structure, whereas, the third one is a three-phase model, composed
of inclusions, interphase, and matrix, similar to the present case.
From view of the abovementioned micromechanics schemes, the
estimation of effective moduli of composites requires knowledge of
the volume fraction and elastic properties of individual phases
[11e20]. Therefore, as an important microstructural characteristic,
the volume fraction of interphase should be considered to inves-
tigate the effective elastic properties of three-phase composites. As
demonstrated by Torquato [5], the more microstructural charac-
teristics of composite media are explored, the more accurate their
effective properties can be estimated. It is worth mentioning that
Garboczi and Bentz [21] presented a theoretical approximation for
the volume fraction of soft interfaces around spherical particles,
and the theoretical model was further employed to predict the
effective conductivity of cementitious composites. Although such
the outstanding contribution may provide guidance for the effec-
tive elastic properties of particulate composites, isotropic spheres
cannot reflect the anisotropy nature of particles in particulate
composites. Also, the volume fraction of soft interfaces around
anisotropic particles has received relatively little attention in terms
of theoretical modeling until fairly recently [4,22e24]. Moreover, it
is quite challenging to evaluate the effect of such the interfacial
property on the elastic moduli of particulate composites with
anisotropic ellipsoidal particles and soft interfaces.

In the present study, heterogeneous particulate composites
consist of a homogeneous matrix, anisotropic spheroidal particles,
and soft interfaces. Perfect bonding conditions are assumed to
prevail at both the particle/interface and the interface/matrix. We
attempt to develop a theoretical framework to predict the effective
moduli of particulate composites, in order to provide an efficient
tool for their design. We first demonstrate a theoretical scheme for
predicting the effective moduli of two-phase composites with
spheroidal inclusions. We give an analytical approximation for the
volume fraction of soft interfaces around ellipsoidal particles.
Subsequently, by the generalized self-consistent scheme, the pre-
diction of the effective moduli of heterogeneous three-phase par-
ticulate composites is explicitly presented in details. The rest of this
article is organized as follows. Section 2 demonstrates the effective
moduli of two-phase composites. Section 3 presents the volume
fraction of soft interfaces around ellipsoidal particles. In Section 4,
the effective moduli of three-phase composites are proposed.
Subsequently, the theoretical results are given and discussed in
Section 5. Finally, this article is completed with some concluding
remarks in Section 6.

2. Effective moduli of two-phase composites

As mentioned above, several attempts have been made for
theoretically investigating the effective moduli of particulate
composites. It is worth mentioning that Wills and co-workers
[25,26] applied a generalized variational principle to propose es-
timates of the Hashin-Shtrikman (HS) type for composites with

ellipsoidal inclusions and considering their spatial distribution
configurations. In that approximation, the RVE of an ergodic M-
phase heterogeneous composite consists ofM-1 types of ellipsoidal
inclusions, distributed in a homogeneous matrix (denoted as phase
1, with modulus tensor E1). It is assumed that there are mr in-
clusions of type r (r ¼ 2, 3,…,M), with modulus tensor Er. The basic
derivation of effective moduli is illustrated in Supplementary
Information (see S1). In that framework, a suitable choice for the
comparison material is the matrix material itself, i.e., E0 ¼ E1, so
that the polarization field vanishes exactly in the matrix phase and
the microstructural tensor 〈Ars〉 for this kind of RVE can be
expressed by

hArsi ¼ frðdrsLir � fsLdrsÞ; ðr; s ¼ 2;…;MÞ (1)

where fr is the volume fraction of inclusions of type r, tensors Lir and
Ldrs are associatedwith the inclusion and distribution shape tensors
Zir and Zdrs, respectively. Lir is defined as [27].

Lir ¼
1

4pjZirj
Z

jxj¼1

C0ðxÞ
���Z�1

ir ,x
����3

dSðxÞ (2)

where the integration is operated over the unit sphere jxj ¼ 1,
C0mn ¼ 1/E1mnxmxn, and xm is one of components of the unit vector.
Similarly, Ldrs can also be expressed by an analogous to Eq. (2) with
Zir replaced by Zdrs. The inverses of the eigenvalues of Zir and Zdrs

are the semi-axes of the ellipsoidal inclusion and the distribution
ellipsoid, respectively. If the distribution of inclusions is the same,
i.e., Ldrs ¼ Ld, Ld and Lir can be characterized by Eshelby tensors HV

and Hr, which represent the geometric factor tensors of the distri-
bution ellipsoid and the ellipsoidal inclusions of type r corre-
spondingly. Herein, we follow the works of Torquato [5] and Duan
et al. [27], where the 2 s-order tensors are displayed by the elliptical
integrals

Hj ¼
a1ja2ja3j

4p

Z
jxj¼1

C0ðxÞ,E1
Y3 dSðxÞ; ðj ¼ r;VÞ (3)

with

Y2 ¼ a21jx
2
1 þ a22jx

2
2 þ a23jx

2
3

where a1j, a2j, and a3j are the semi-axes of the j th ellipsoidal in-
clusion. For a spheroidal inclusion, its symmetry axis is aligned
along the Z-axis, namely, a1j ¼ a2j ¼ a, and a3j ¼ b. HV and Hr have
exactly diagonal eigenvalues, that is

Hj ¼
2
4Hj 0 0

0 Hj 0
0 0 1� 2Hj

3
5; ðj ¼ r;VÞ (4)

with
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where k is the aspect ratio of spheroid defined as k¼ b/a. If k > 1, the
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