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Can one extract the π–neutron scattering length from π–deuteron scattering?
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Abstract

We give a proof of evidence that the original power counting by Weinberg can be applied to estimate the contributions of the operators
contributing to the π–deuteron scattering length. As a consequence, π–deuteron observables can be used to extract neutron amplitudes—in case
of π–deuteron scattering this means that the π–neutron scattering length can be extracted with high accuracy. This result is at variance with recent
claims. We discuss the origin of this difference.
© 2006 Elsevier B.V. All rights reserved.

1. In absence of neutron targets, it became common prac-
tice to use few-body nuclei as effective neutron targets. To
extract π–neutron (π–n) amplitudes, π–deuteron (π–d) scatter-
ing has been studied in the past. This program can be successful
only when both the proton observables and the few-body cor-
rections are known to high accuracy. As the former can be
measured directly, they do not cause any problem. For the latter
the development of chiral perturbation theory for few-nucleon
systems promised a controlled, model-independent, high preci-
sion evaluation of the corresponding amplitudes. This program
was put forward in a series of publications, e.g., for π–d scat-
tering (see [1] and references therein).

All those analyses are based on the conjecture of Ref. [2]
that the transition operators for reactions on nuclei with external
sources can be constructed perturbatively within chiral pertur-
bation theory. The resulting operators are then to be convoluted
with the appropriate nuclear wave functions. For this to work
it needs to be assumed that the contribution of few-nucleon
counter terms to the transition operators can be estimated on
the basis of naive dimensional analysis. If we apply this recipe
to π–d scattering, the leading counter term (Fig. 1(d)) appears
at 5th order—two orders down compared to the leading few-
body correction (Fig. 1(c)). This was recently confirmed by an
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explicit calculation of the counter term contribution assuming
natural strength for the transition operator [4].

In contrast to this it was found recently that a logarithmic
scale dependence shows up in the leading few-body correction
to π–d scattering (Fig. 1(c)) that calls for a counter term already
at this very order [3,4] (see also [5]), which would preclude
any high accuracy extraction of π–n scattering parameters from
π–d data. This finding is based on a perturbative treatment of
one-pion exchange.

In contrast, in this Letter, we demonstrate by an explicit nu-
merical calculation that the logarithmic divergence disappears,
if we treat the one-pion exchange non-perturbatively to obtain
the wave function. This explains, why previous studies basi-
cally lead to identical numbers for the leading few-body cor-
rection although very different wave functions were employed
(see discussion in Ref. [1]).1 Stated differently, we will show
that the contact term that necessarily arises at next-to-leading
order (NLO), when pions are treated perturbatively in the wave
function, can be calculated once the pion exchange is included
non-perturbatively in the wave function. This was already con-
jectured in Ref. [5], but not shown explicitly.

Thus the main goal of our study is to investigate the reg-
ulator dependence of the leading few-body correction. Since
we are going to employ wave functions that contain non-

1 Please note that in Ref. [6], it was shown that in the deuteron channel pions
should not be treated perturbatively.
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Fig. 1. Typical contributions to π–d scattering. Diagrams (a) and (b) show the tree level and the one-loop contribution to the one-body term, the pion rescattering
contribution is depicted by (c) and diagram (d) shows a two-nucleon contact term. In this figure solid (dashed) lines denote nucleons (pions) and ellipses the deuteron
wave function.

perturbative pion contributions, this study can only be per-
formed numerically. We will use deuteron wave functions that
were constructed for cut-offs that vary over a wide range (Λ =
2–20 fm−1 = 400–4000 MeV). The procedure of their con-
struction is described in Ref. [8] and will be briefly reviewed be-
low. Already in Ref. [1] a mild cut-off dependence was reported
for calculations using wave functions with non-perturbative pi-
ons, when the regulator was changed from 500 to 600 MeV.
This might either be because of the absence of the logarithmic
divergence due to the wave functions used or simply because
the coefficient in front of the logarithm is accidentally small.
Due to the large range of variation of cut-off values used here
we are in the position to answer this question: we will show
that there is no sign of a logarithmic regulator dependence of
the results as soon as the complete wave functions are used.
The consequences of this observation will be discussed in the
final section.

In Refs. [9,10], it was stressed that care has to be taken when
calculating pion reactions on nuclei. There it was shown that
a subtle cancellation pattern exits between contributions from
loops in one-body and few-body operators. This has the effect
that the static pion exchange is an excellent approximation to
the exact result for the leading few-body corrections to π–d
scattering. Therefore, here we will focus on the static exchange
only.

2. In our investigation we use the wave functions con-
structed as outlined in Ref. [8]. They emerge as a solution of
the Schrödinger equation

(1)Ψ π
Λ (p) = G(p)

∫
d3p′ V (p,p′)fΛ(p,p′)Ψ π

Λ (p′),

where G(p) = (−ε − p2/M)−1 denotes the two-nucleon prop-
agator with ε and M for the deuteron binding energy and the nu-
cleon mass, respectively. The leading order potential V (p,p′)
comprises contributions from both the one-pion exchange as
well as a contact term as depicted in Fig. 2 (see [7]). As regula-
tor function we use

(2)fΛ(p,p′) = exp

(
p4 + p′4

Λ4

)
.

For a given value of the regulator Λ the only free parameter is
C—the strength of the contact term as depicted in Fig. 2(b). For
this study, this parameter was adjusted such that the deuteron
binding energy was reproduced, to exclude any dependence of
the results on an incorrect asymptotic behavior of the deuteron
wave function. We checked that the description of the phase

Fig. 2. Contributions to the NN potential at leading order: the one-pion ex-
change (a) and a momentum-independent contact term (b).

Table 1
Summary of some deuteron properties obtained from Ψ π

Λ —the wave functions
with non-perturbative one-pion exchange for various cut-offs. Here, the cut-off
Λ is given in fm−1, the binding energy and kinetic energy E0 and T in MeV,
the asymptotic S-state normalization AS is in fm−1/2, the point nucleon radius
in fm, and the quadrupole moment in fm2. η is the ratio of the asymptotic S-
and D-state normalization

Λ E0 T PD AS η rd Qd

2 2.225 28.91 5.24 0.839 0.030 1.889 0.3005
4 2.225 45.48 8.23 0.866 0.027 1.933 0.2827
6 2.224 62.33 6.94 0.866 0.025 1.932 0.2704
8 2.225 75.95 6.76 0.864 0.026 1.926 0.2676

12 2.227 85.80 7.14 0.864 0.026 1.925 0.2675
16.5 2.214 102.50 7.08 0.862 0.026 1.929 0.2676
20 2.210 115.07 7.07 0.861 0.026 1.929 0.2675

Expt. 2.225 – – 0.8846 0.0256 1.9671 0.2859

Table 2
Summary of deuteron properties obtained from the wave functions Ψ noπ

Λ —
where only a contact interaction was used in the potential—for various cut-offs.
The notation is the same as in Table 1

Λ E0 T AS rd

2 2.225 32.60 0.76 1.728
4 2.225 69.59 0.72 1.617
6 2.225 106.76 0.71 1.585
8 2.225 143.99 0.70 1.569

12 2.225 218.51 0.69 1.555
16 2.225 293.04 0.69 1.547
20 2.225 367.59 0.69 1.543

Expt. 2.225 – 0.8846 1.9671

shifts in the 3S1–3D1 channel is comparable to the one ob-
tained in [8]. This numerical study can only be conclusive,
when we cover a wide range of cut-offs. We decided to use
values of Λ between 2 and 20 fm−1 (400–4000 MeV). This
range starts below the chiral symmetry breaking scale of Λχ ≈
1000–1200 MeV and extends to values larger by a factor of 4.
In this range, we also observe the appearance of spurious bound
states in the 3S1–3D1 channel. However, their energies are large
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