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Masses of heavy tetraquarks in the relativistic quark model
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Abstract

The masses of heavy tetraquarks with hidden charm and bottom are calculated in the framework of the relativistic quark model. The tetraquark
is considered as the bound state of a heavy–light diquark and antidiquark. The light quark in a heavy–light diquark is treated completely rela-
tivistically. The internal structure of the diquark is taken into account by calculating the diquark–gluon form factor in terms of the diquark wave
functions. New experimental data on charmonium-like states above open charm threshold are discussed. The obtained results indicate that the
X(3872) can be the tetraquark state with hidden charm. The masses of ground state tetraquarks with hidden bottom are found to be below the
open bottom threshold.
© 2006 Elsevier B.V. All rights reserved.
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Recently, significant progress in experimental investigations
of charmonium spectroscopy has been achieved. Several new
states X(3872), Z(3931), Y(3943), X(3943), Y(4260) were
observed [1] which provide challenge to the theory, since not
all of them can be easily accommodated as the cc̄-charmonium.
The most natural conjecture is that these states are the multi-
quark composite systems considered long ago e.g. in [2]. The
proposal to revisit the multi-quark picture using diquarks has
been raised by Jaffe and Wilczek [3]. Currently the best estab-
lished state is the narrow X(3872) which was originally dis-
covered in B decays [4,5] and later confirmed in pp̄ collisions
[6,7]. Its mass and observed decays, which favour JPC = 1++
assignment, make a cc̄ interpretation problematic [8]. Different
theoretical interpretations of the X(3872) state were put for-
ward which use the near proximity of its mass to the D0D̄∗0

threshold. The most popular ones are: the D0–D̄∗0 molecular
state bound by pion and quark exchanges [9]; an S-wave cusp
at D0D̄∗0 threshold [10] and the diquark–antidiquark [cq][c̄q̄]
tetraquark state [11] (q = u,d).
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Maiani et al. [11] in the framework of the phenomenolog-
ical constituent quark model considered the masses of hidden
charm diquark–antidiquark states in terms of the constituent
diquark mass and spin–spin interactions. They identified the
X(3872) with the S-wave bound state of a spin one and spin
zero diquark and antidiquark with the symmetric diquark–spin
distribution ([cq]S=1[c̄q̄]S=0 + [cq]S=0[c̄q̄]S=1) and used its
mass to fix the constituent diquark mass. Spin–spin couplings
were fixed from the analysis of the observed meson and baryon
masses. On this basis they predicted the existence of a 2++
state [cq]S=1[c̄q̄]S=1 that can be associated to the Y(3943).
They also argued [12] that Y(4260) could be the first or-
bital excitation of the charm-strange diquark–antidiquark state
([cs]S=0[c̄s̄]S=0)P -wave. In Ref. [13] it is pointed out that non-
leptonic B decays provide a favourable environment for the
production of hidden charm diquark–antidiquark bound states.
In contrast it is argued [14] that the observed X(3872) produc-
tion in B decays and in high-energy pp̄ collisions is too large
for a loosely bound molecule (with binding energy of 1 MeV or
less).

In this Letter we use the relativistic quark model [15,16]
based on the quasipotential approach to calculate the mass spec-
tra of tetraquarks with hidden charm and bottom as the heavy–
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light diquark–antidiquark bound states ([Qq][Q̄q̄], Q = c, b).
Recently we considered the mass spectra of doubly heavy
(QQq) [17] and heavy (qqQ) [18] baryons in the heavy-
diquark–light-quark and light-diquark–heavy-quark approxi-
mations, respectively. The light quarks and light diquarks were
treated completely relativistically. The internal structure of the
light and heavy diquarks was taken into account by calculat-
ing diquark–gluon form factors on the basis of the determined
diquark wave functions. The found good agreement [18] with
available experimental data gives additional motivation for con-
sidering diquarks as reasonable building blocks of hadrons. It is
important to note that all parameters of our model were deter-
mined from the previous considerations of meson mass spectra
and decays, and we will keep them fixed in the following analy-
sis of heavy tetraquarks.

In the quasipotential approach and diquark–antidiquark pic-
ture of heavy tetraquarks the interaction of two quarks in a
diquark and the heavy diquark–antidiquark interaction in a
tetraquark are described by the diquark wave function (Ψd) of
the bound quark–quark state and by the tetraquark wave func-
tion (ΨT ) of the bound diquark–antidiquark state respectively,
which satisfy the quasipotential equation of the Schrödinger
type [15]
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here M = E1 + E2 is the bound state mass (diquark or
tetraquark), m1,2 are the masses of quarks (q1 and q2) which
form the diquark or of the diquark (d) and antiquark (d ′) which
form the heavy tetraquark (T ), and p is their relative mo-
mentum. In the center of mass system the relative momentum
squared on mass shell reads

(4)b2(M) = [M2 − (m1 + m2)
2][M2 − (m1 − m2)

2]
4M2

.

The kernel V (p,q;M) in Eq. (1) is the quasipotential oper-
ator of the quark–quark or diquark–antidiquark interaction. It is
constructed with the help of the off-mass-shell scattering am-
plitude, projected onto the positive energy states. In the follow-
ing analysis we closely follow the similar construction of the
quark–antiquark interaction in mesons which were extensively
studied in our relativistic quark model [15,16]. For the quark–
quark interaction in a diquark we use the relation Vqq = Vqq̄/2
arising under the assumption about the octet structure of the in-
teraction from the difference in the qq and qq̄ colour states.1

1 It is important to study diquark correlations in gauge-invariant color-singlet
hadron states on the lattice.

An important role in this construction is played by the Lorentz-
structure of the confining interaction. In our analysis of mesons
while constructing the quasipotential of the quark–antiquark in-
teraction, we adopted that the effective interaction is the sum of
the usual one-gluon exchange term with the mixture of long-
range vector and scalar linear confining potentials, where the
vector confining potential contains the Pauli terms. We use the
same conventions for the construction of the quark–quark and
diquark–antidiquark interactions in the tetraquark. The quasi-
potential is then defined as follows [16,17]:

(a) For the quark–quark (Qq) interaction

(5)V (p,q;M) = ū1(p)ū2(−p)V(p,q;M)u1(q)u2(−q),

with
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Here αs is the QCD coupling constant, Dμν is the gluon propa-
gator in the Coulomb gauge

D00(k) = −4π
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, Dij (k) = −4π
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(
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,

(6)D0i = Di0 = 0,

and k = p − q; γμ and u(p) are the Dirac matrices and spinors
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with ε(p) = √
p2 + m2.

The effective long-range vector vertex of the quark is de-
fined [16] by

(8)Γμ(k) = γμ + iκ

2m
σμνk̃

ν, k̃ = (0,k),

where κ is the Pauli interaction constant characterizing the
anomalous chromomagnetic moment of quarks. In the config-
uration space the vector and scalar confining potentials in the
nonrelativistic limit reduce to

V V
conf(r) = (1 − ε)Vconf(r),

(9)V S
conf(r) = εVconf(r),

with

(10)Vconf(r) = V S
conf(r) + V V

conf(r) = Ar + B,

where ε is the mixing coefficient.
(b) For diquark–antidiquark (dd̄ ′) interaction
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