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Nuclear symmetry energy in relativistic mean field theory
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Abstract

The physical origin of the nuclear symmetry energy is studied within the relativistic mean field (RMF) theory. Based on the nuclear binding
energies calculated with and without mean isovector potential for several isobaric chains we confirm earlier Skyrme–Hartree–Fock result that the
nuclear symmetry energy strength depends on the mean level spacingε(A) and an effective mean isovector potential strengthκ(A). A detailed
analysis of the isospin dependence of these two components contributing to the nuclear symmetry energy reveals a quadratic dependence due to
the mean-isoscalar potential,∼ εT 2, and, completely unexpectedly, the presence of a strong linear component∼ κT (T +1+ ε/κ) in the isovector
potential. The latter generates a nuclear symmetry energy in RMF theory that is proportional toEsym∼ T (T +1) at variance to the non-relativistic
calculation. The origin of the linear term in RMF theory needs to be further explored.
 2005 Elsevier B.V. All rights reserved.
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One of the most important topics in current nuclear physics
is to search for the existence limit of atomic nuclei, i.e., to de-
termine the nuclear drip line. In this respect, the role of the
continuum in loosely bound nuclei and, in particular, its impact
on the treatment of pairing correlations has been discussed to
great extent in recent time. However, the proper understanding
and correct reproduction of the nuclear symmetry energy (NSE)
may have even greater bearing for masses of loosely bound nu-
clei and certainly is a key issue in the study of exotic nuclei. The
very fundamental questions in this respect concern both the un-
derstanding of the microscopic origin of the NSE strength as
well as its isospin dependence. The latter issue has attracted re-
cently great attention also inN ∼ Z nuclei, see Ref.[1] and
references therein.
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The NSE is conventionally parametrized as:

(1)Esym= asym(A)T (T + λ),

whereT = |Tz| = |N − Z|/2. The strength of the NSE admits
typically volume and surface componentsasym(A) = av/A −
as/A

4/3 and its physical origin is traditionally explained in
terms of the kinetic energy and mean isovector potential (in-
teraction) contributions, i.e.asym(A) = akin(A) + aint(A), re-
spectively[2]. The linear term is found to be strongly model
dependent and there is a common belief that mean-field mod-
els yield essentially only a quadratic termλ ≈ 0. On the other
hand, the nuclear shell-model[3–5] or models restoring isospin
symmetry[6] suggest thatλ ≈ 1. No consensus is reached so far
concerning the value ofλ although there is certain preference
for λ ≈ 1. Indeed, experimental masses of nuclei with small
values ofT supports the existence of the linear term[7]. Simi-
lar conclusions were reached by Jänecke et al.[8] based on the
analysis of experimental binding energies forA < 80 nuclei.
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One of the most accurate mass formula, the so-called FRDM
[9] employs a value ofλ ≈ 1 but inconsistently admits only a
volume-like linear term. AssumingT (T +1) dependence Duflo
and Zuker have performed a global fit to nuclear masses obtain-
ing [10]

(2)asym(A) = 134.4

A
− 203.6

A4/3
[MeV].

A different view on the origin of the NSE was presented
recently by Satuła and Wyss. In Refs.[11–13] it was demon-
strated using the Skyrme–Hartree–Fock (SHF) model that the
NSE can be directly associated with the mean level spac-
ing ε(A) and mean isovector potential,Esym = 1

2ε(A)T 2 +
1
2κ(A)T (T + 1) [11–13]. Surprisingly, the self-consistent cal-
culations revealed that the complicated isovector mean potential
induced by the Skyrme force is similar to that obtained from a
simple interaction1

2κ(A)T̂ · T̂, i.e., is very accurately charac-
terized by a single strengthκ(A) [11–13]. This study revealed
also that the SHF theory yield in fact a (partial) linear term
with λ ≈ κ/(2asym) and that this term originates from neutron–
proton exchange interaction.

Alongside with the SHF calculation, the relativistic mean
field (RMF) theory has been used for a large variety of nuclear
structure phenomena[14]. Since the RMF theory is based on
a very different concept from the SHF, it is highly interesting
to investigate the structure of the NSE in the framework of the
RMF theory.

The details of RMF theory together with its applications
can be found in a number of review articles, see for example
Ref. [15] and references therein, and will not be repeated here.
The basic ansatz of the RMF theory is a Lagrangian density
whereby nucleons are described as Dirac particles which in-
teract via the exchange of various mesons [the isoscalar–scalar
sigma (σ ), isoscalar–vector omega (ω) and isovector–vector
rho (ρ)] and the photon. Theσ and ω mesons provide the
attractive and repulsive part of the nucleon–nucleon force, re-
spectively. The isospin asymmetry is provided by the isovector
ρ meson. Hence, by switching on and off the coupling to theρ

meson, one can easily separate the role of isoscalar and isovec-
tor parts of the interaction and study them independently.

In the nuclei considered here, time reversal symmetry is
preserved and the spatial vector components ofω, �ρ and A
fields vanish. This leaves only the time-like componentsω0,
�ρ 0 andA0. Charge conservation guarantees that only the third
component of the isovector�ρ 0 meson is active. For reason of
simplicity, axial symmetry is assumed in the present work. The
Dirac spinorψi as well as the meson fields can be expanded
in terms of the eigenfunctions of a deformed axially symmetric
oscillator potential[16] or Woods–Saxon potential[17], and the
solution of the problem is transformed into a diagonalization of
a Hermitian matrix.

The RMF calculations are performed for theA = 40, 48, 56,
88, 100, 120, 140, 160, 164, and 180 isobars with the effective
Lagrangians NL3[18], TM1 [19], and PK1[20]. Our choice
of the parameterizations is somewhat arbitrary. However, the
purpose of this work is not to make a detailed comparison to
the data but rather to investigate specific features of the RMF

Fig. 1. The mean level spacingε (left) and its counterpart (right) scaled
by m∗/m for A = 48 (upper), 88 (middle) and 160 (lower) isobaric chains
calculated using effective Lagrangians NL3, TM1, and PK1 as marked in the
figure. The shadowed areas correspond to the empirical mean level spacing:
εemp= 53

A
–66

A
MeV.

approach pertaining to the isovector channel. These properties
are expected to be fairly parameterization independent, in par-
ticular that these parameterizations reproduce rather well the
equation of state for densitiesρ � 0.2 fm−3 [21,22].

The Dirac equations are solved by expansion in the harmonic
oscillator basis with 14 oscillator shells for both the fermion
fields and boson fields. The oscillator frequency of the har-
monic oscillator basis is set tōhω0 = 41A−1/3 MeV and the
deformation of harmonic oscillator basisβ0 is reasonably cho-
sen to obtain the lowest energy. Generally speaking, the RMF
calculation reproduce the experimental binding energy to an ac-
curacy less than 1%. For the present study we are mainly inter-
ested in the NSE emerging in the RMF theory due to the strong
(particle–hole) interaction. Hence the Coulomb potentials and
the pairing correlations will be neglected in the following. The
full potential in the Dirac equation is

Vtot = V (r) + βS(r)

(3)= gωω0(r) + gρ �τ · �ρ 0(r) + βgσ σ(r).

It can easily be separated into isovector and isoscalar compo-
nents, i.e.,Vtot = Vis + Viv , where

Vis(r) = gωω0(r) + βgσ σ(r),

(4)Viv(r) = gρ �τ · �ρ 0(r).

The binding energy calculated with the full potentialVtot in
Eq.(3) is denoted asET . The energy obtained by switching off
the isovector potential,Viv ≡ 0, i.e. by taking in the calculation
Vtot ≡ Vis, is denoted byẼT . In order to single out the impact
of isoscalar fields on the NSE, we useẼT to extract the mean
level spacingε(A,TZ) along an isobaric chain

(5)ẼT (A,Tz) − ẼT =0(A,Tz = 0) = 1

2
ε(A,Tz)T

2.
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