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Relativistic non-instantaneous action-at-a-distance interactions

Domingo J. Louis-Martinez

Science One Program and Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada

Received 9 September 2005; received in revised form 7 October 2005; accepted 11 November 2005

Available online 21 November 2005

Editor: M. Cvetǐc

Abstract

Relativistic action-at-a-distance theories with interactions that propagate at the speed of light in vacuum are investigated. We consider the most
general action depending on the velocities and relative positions of the particles. The Poincaré invariant parameters that label successive events
along the world lines can be identified with the proper times of the particles provided that certain conditions are imposed on the interaction
terms in the action. Further conditions on the interaction terms arise from the requirement that mass be a scalar. A generic class of theories with
interactions that satisfy these conditions is found. The relativistic equations of motion for these theories are presented. We obtain exact circular
orbits solutions of the relativistic one-body problem. The exact relativistic one-body Hamiltonian is also derived. The theory has three components:
a linearly rising potential, a Coulomb-like interaction and a dynamical component to the Poincaré invariant mass. At the quantum level we obtain
the generalized Klein–Gordon–Fock equation and the Dirac equation.
 2005 Elsevier B.V. All rights reserved.

In the past thirty years or so, a great deal of work has been focused on the problem of relativistic bound states[1–14], particularly
on the relativistic equations for quark–antiquark bound states and the problem of deriving the meson spectrum[15,16]. Within the
relativistic action-at-a-distance formulation of Wheeler and Feynman[17–22](for electrodynamics) solutions of the two-body Dirac
equations[23,24]have been found for positronium[23]. The spectrum obtained by this method agrees with the result of quantum
field theory[25,26] at least up to theα4 order. The approach has also been applied to mesons[27]. There is strong experimental
evidence that for large separations the interaction between quarks can be effectively described by a linearly rising potential[16].
Several relativistic generalizations of a linearly rising potential have been studied[28–32]. From quantum chromodynamics, using
the Wilson loops approach[33], it has been established that the quark–antiquark bound states are effectively described by a static
potential, which is a sum of a linearly rising potential and a Coulomb-like interaction:V = σr − k

r
[34].

In this Letter we extend the approach of Wheeler and Feynman to explore what types of interparticle interactions are allowed in
special relativity. We assume that the interactions travel at the speed of light in vacuum and that the theory can be described by an
action principle for which the interaction terms in the action do not depend on the four-vector accelerations or on higher derivatives.

We find explicitly the most general theory that satisfies these conditions. In the static limit we find the theory has three compo-
nents: a linearly rising potential, a Coulomb-like interaction and a dynamical component to the Poincaré invariant mass.

We obtain the relativistic equations of motion forN particles and apply these results to the relativistic one-body problem, for
which we obtain explicitly the Hamiltonian. Quantum mechanical equations for spinless particles and for spin-1

2 particles are
presented at the end of the Letter. The possibility of considering the effect of a dynamical component to the quark masses in current
phenomenological models is naturally suggested by the results obtained here.

Let us consider a system ofN interacting relativistic particles. Letmi (i = 1,2, . . . ,N ) be the mass of particlei, c is the speed
of light andλi a Poincaré invariant parameter labeling the events along the world linez

µ
i (λi) of particlei in Minkowski spacetime.

We denotėzµ
i = dz

µ
i

dλi
.

E-mail address: martinez@phas.ubc.ca(D.J. Louis-Martinez).

0370-2693/$ – see front matter 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2005.11.029

http://www.elsevier.com/locate/physletb
mailto:martinez@phas.ubc.ca
http://dx.doi.org/10.1016/j.physletb.2005.11.029


734 D.J. Louis-Martinez / Physics Letters B 632 (2006) 733–739

The metric tensor:ηµν = diag(+1,−1,−1,−1). We can write the Poincaré invariants[3,4]

(1)ζi = ż2
i ,

(2)ξij = (żi żj ),

(3)γij = (
żi (zj − zi)

)
,

(4)ρij = (zi − zj )
2.

Let us consider the action

(5)S =
∑

i

mic

∫
dλi ζi +

∑
i

∑
j �=i

gigj

c

∫ ∫
dλi dλj F (ξij , γij , γji , ζi, ζj )δ(ρij ).

The Dirac delta function in(5) accounts for the interactions propagating at the speed of light forward and backward in time.
Without loss of generality, we assume the functionF to be symmetric:

(6)F(ξij , γij , γji, ζi , ζj ) = F(ξij , γji, γij , ζj , ζi).

The Minkowski equations of motion forN interacting relativistic particles can be derived from the action(5) using the variational
principle. We find1

(7)miz̈
µ
i = K

µ
i ,

where

(8)K
µ
i = gi

c2

∑
j �=i

gj

∫
dλj δ(ρij )

(
A

µ
ij + B

µν
ij z̈iν + C

µν
ij z̈jν

)
,

(9)

A
µ
ij = ∂F

∂ziµ

− ∂2F

∂z
η
i ∂żiµ

ż
η
i + ζj

γ 2
ji

((
z
µ
i − z

µ
j

)
F + γij

∂F

∂żiµ

)
+ 1

γji

(
−ż

µ
j F + (

z
µ
i − z

µ
j

) ∂F

∂z
η
j

ż
η
j + ξij

∂F

∂żiµ

+ γij

∂2F

∂z
η
j ∂żiµ

ż
η
j

)
,

(10)B
µν
ij = − ∂2F

∂żiµ∂żiν

,

(11)C
µν
ij = (z

µ
i − z

µ
j )

γji

(
∂F

∂żjν

− (zν
i − zν

j )

γji

F

)
+ γij

γji

(
∂2F

∂żiµ∂żjν

− (zν
i − zν

j )

γji

∂F

∂żiµ

)
.

In order to identifyλi with si = cτi , whereτi is the particle’s proper time in flat spacetime, one needs to impose the well-known
conditions:

(12)(Ki żi) = 0.

The conditions(12) guarantee that, for all solutions of the equations of motion,ζi (i = 1,2, . . . ,N ) are constants (which by
simple scaling can be made equal to 1):

(13)dλ2
i = ηµν dz

µ
i dzν

i .

Taking into account Eqs.(8) and (9)–(11)we can see that Eqs.(12) lead to the following conditions onF :

(14)γji żiη

∂F̃

∂ziη

− γij żjη

∂F̃

∂zjη

−
(

ξij + ζj

γij

γji

)
F̃ = 0,

(15)
∂F̃

∂żiν

= 0,

(16)
(
zν
i − zν

j

)
F̃ − γji

∂F̃

∂żjν

= 0,

1 Equations(7)–(11)are derived from(5) by varyingziµ in the action and integrating by parts, taking into account that

d

dλi

(
δ(ρij )

) =
dρij

dλi

dρij

dλj

d

dλj

(
δ(ρij )

) = γij

γji

d

dλj

(
δ(ρij )

)
.
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