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ζ -function regularization of the effective action for aδ-function potential
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Abstract

We present an exact evaluation of the generalizedζ -function for a real scalar field in aδ-function potential in the spacetimeS1 × R
D−1. The

result for theζ -function is used to obtain the effective action. As a byproduct of the calculation the heat-kernel coefficients are obtained to all
orders in a closed form. The regularized zero-point energy is found and we discuss the renormalization of the effective action.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The use ofζ -function regularization in quantum field the-
ory dates back to Refs.[1,2]. It is closely related to the use
of the heat-kernel expansion, whose utility in general quantum
field theory was described by DeWitt[3]. There is also a large
body of mathematical literature on generalizedζ -functions and
the asymptotic expansion of the heat kernel. (See Ref.[4] for
example.) Extensive references to the literature onζ -function
regularization and related matters, particularly quantum field
theory applications, can be found in the reviews[5–7].

The main concern of the present Letter is the explicit eval-
uation of the generalizedζ -function for a real scalar field in a
δ-function potential, and its use in obtaining a general expres-
sion for the heat-kernel coefficients to arbitrary order, in the
spacetimeS1 × R

D−1. Apart form interest simply as a possi-
ble model of an external potential,δ-function type potentials
arise naturally in brane-world models[8]. (See Refs.[9–12]
for a selection of the earliest papers on quantum field theory in
brane-world models.) The heat-kernel asymptotic expansion in
the presence of aδ-function potential has been studied in Refs.
[13–15]. Early work on quantum field theory in the presence
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of δ-function potentials, especially the computation of vacuum
energies was presented in Ref.[16] based on earlier evaluations
of the Feynman Green function[17]. Later work on vacuum
energies and other quantum field theory calculations includes
[18–22].

We begin with the usual action functional for a scalar field
φ with a coupling to an external potentialV (x) in D spacetime
dimensions.

(1.1)S0 =
∫

dDx

{
1

2
∂µφ∂µφ + 1

2
m2φ2 + 1

2
V (x)φ2

}
.

We will mention briefly what happens for a self-interaction at
the end when we discuss the renormalization of the theory. The
spacetime of interest to us here isS

1 ×R
D−1, and we choose to

work with a Euclidean metric. To deal with the infinite volume
we will assume periodic boundary conditions and take the large
volume limit. We will choose theS1 direction to bex where
0 � x � L, L representing the circumference of the circle that
we keep finite. The periodicity lengths in the other spatial di-
rections are denoted byL2, . . . ,LD−1 and we takeLj � L for
all j = 2, . . . ,D − 1. The fields are also periodic in the time di-
rection with periodβ, and since we will not be concerned with
finite temperature effects here we takeβ � L as well.

As an external potential we take

(1.2)V (x) = V0δ(x − a),
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where 0< a < L, andV0 > 0 is a constant. Due to symmetry
under rotations aroundS1 we would not expect our result for
the effective action, and hence for any observable consequence,
to depend on the value chosen fora. We define

(1.3)� = −� + m2 + V (x),

and the one-loop contribution to the effective action is

(1.4)Γ (1) = 1

2
lndet

(
�2�

)
,

where� is an arbitrary renormalization scale with dimensions of
length. We will regularize this byζ -function regularization[2].
To do this, letφk(x) be an eigenfunction of� with eigen-
valueλk :

(1.5)�φk = λkφk.

Define

(1.6)ζ(s) =
∑

k

λ−s
k

for �(s) > D/2. By analytic continuation we can computeζ(s)

in a neighbourhood ofs = 0 and adopt

(1.7)Γ (1) = −1

2
ζ ′(0) + 1

2
ζ(0) ln�2.

Knowledge ofλk enables us to obtainζ(s) which in turn allows
us to evaluateΓ (1).

The generalizedζ -function is intimately connected to the
heat kernel,

(1.8)K(τ) =
∑

k

e−τλk .

As τ → 0, K(τ) has a well-known asymptotic expansion that
we will write as

(1.9)K(τ) ∼ (4πτ)−D/2
∞∑

j=0

(
τ j aj + τ j+1/2bj

)
for coefficientsaj and bj . These heat-kernel coefficients are
known under very general conditions. For theδ-function po-
tential, the existence of this expansion has been shown in a
more general setting by Bordag and Vassilevich[13]. The im-
portance of the generalizedζ -function is that(4π)D/2�(s)ζ(s)

has simple poles ats = D/2 − j with residuesaj and ats =
(D − 1)/2− j with residuesbj for j = 0,1,2, . . . . Therefore,
if we can computeζ(s) and then study its analytic continuation
to �(s) < D/2 we can calculate the heat-kernel coefficients.

For the case ofδ-function potentials, the first few heat-kernel
coefficients are known in a variety of cases[13–15]. What we
will do in the present Letter is to calculate an explicit result for
ζ(s) in the simple spacetime described above, obtain its analytic
continuation and discover explicit results foraj andbj for all j .
The results can be checked against previously known ones for
small j , and will provide a useful consistency check on any
future work in this area. In addition, we will find explicit closed
form results forζ(0) andζ ′(0) thereby calculating the effective
action. This essentially determines the Casimir vacuum energy
obtained by a regularized sum of zero-point energies.

2. Generalized ζ -function

It is straightforward to show that the eigenvaluesλk in (1.5)
for the particular case of(1.3)with V (x) given by(1.2) is

(2.1)

λk =
(

2πn0

β

)2

+
(

2πn2

L2

)2

+ · · · +
(

2πnD−1

LD−1

)2

+ k2
x + m2,

with periodic boundary conditions as discussed.n0, n2, . . . ,

nD−1 are integers taking the values 0,±1,±2, . . . andkx is the
solution to

(2.2)ψ(κ) = sin(κ/2) − α
cos(κ/2)

κ
= 0,

where we have defined dimensionless variables

(2.3)α = 1

2
LV0,

(2.4)κ = kxL.

For α = 0, this gives the usual resultkx = 2πn/L for periodic
boundary conditions. Forα > 0, the solutions to(2.2) are all
real and non-zero. We can label the solutions to(2.2) by κn

with n = ±1,±2, . . . andκ−n = −κn. Of course forα �= 0 we
cannot find an explicit result forκn, but we will see that we do
not need to. The derivation of(2.2) is standard: Just take the
general solutions forx < a andx > a and match the disconti-
nuity in derivatives across theδ-function. The location of the
δ-function (namely the value ofa) does not enter the eigenval-
ues, as expected.

Form the generalizedζ -function (1.6) and replace the
sums overn0, n2, . . . , nD−1 with integrals, valid forβ,L2, . . . ,

LD−1 � L. These integrals are easily evaluated using the inte-
gral representation of the�-function, leaving

ζ(s) = V (4π)−(D−1)/2�(s − D−1
2 )

�(s)
L2s−D

(2.5)×
∞∑

n=−∞

(
ν2 + κ2

n

)D−1
2 −s

.

Here

(2.6)ν = mL

is a dimensionless parameter, andV = βLL2 · · ·LD−1 is the
spacetime volume.

At this stage we convert the remaining sum in(2.5) into a
contour integral. We choose our contour to be a thin rectangle
enclosing the realκ-axis. We integrate a function with poles at
κ = κn whose residues are given by(ν2 + κ2

n)(D−1)/2−s . The
natural choice leads to

(2.7)
∞∑

n=−∞

(
ν2 + κ2

n

)D−1
2 −s =

∫
C

dκ

2πi

(
ν2 + κ2

n

)D−1
2 −s ψ ′(κ)

ψ(κ)
,

with C the contour described, andψ(κ) given by (2.2). For
�(s) > D/2, the sides of the rectangle parallel to the imaginary
axis make a vanishing contribution as we extend the rectangle to
infinity. The integrand has branch points atκ = ±iν. We choose
the branch cuts along the imaginary axis extending fromκ = iν
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