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a b s t r a c t

Here we address the scattering construction of discrete time quan-
tum walks on the honeycomb lattice. We write the system general
(unitary) one step time evolution operator in terms of: (i) complete
arbitrary scattering matrices Γ (j,k), defined on the sites (j, k) of
the lattice and; and (ii) topological directional functions Φ , which
represent the distinct ways we can keep track of the propagation
directions along the three bonds attached to each (j, k). By imposing
the Φ ’s to comply with all the honeycomb translational and point
group symmetries (in the case of Γ (j,k)

= Γ ), we obtain in total
ten independent model versions, presenting different dynamical
features. To study some of their traits, we consider the idea of ‘char-
acteristic paths’ CPs (closely related to classical random walks),
determining the CPs for each one of the ten formulations. We then
discuss many numerical examples of time evolution dynamics for
our scattering quantumwalks. For the calculations we use few Γ ’s,
as the Discrete Fourier Transform (DFT) and Grover matrices.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Random walks (RWs) in general [1] and Brownian motion in particular [2] are long-established
important subjects in the realm of classical physics, encompassing a broad range of applications [3].
In the most basic 1D formulation, a RW is a simple stochastic dynamics where a particle (leaving
from x = x0 at t = 0) continuously moves with constant speed, v > 0, in the infinite line. Defining
ℓ = v τ – for τ a characteristic time – each time (at t = τ , t = 2τ , t = 3τ , . . .) the particle reaches a
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position xj = x0 + j ℓ (j ∈ Z), an instantaneous decision about the next direction to go (either right,
with probability p, or left, with 1 − p) is made. Thus, once in xj the particle immediately switches or
not the velocity signal according to such choice. In this way, the classical RW can be viewed as taking
place in a ‘lattice’ (or graph), with the ‘sites’ (or vertices) located at the xj’s and separated by ‘bonds’
(or edges) of length ℓ. Hence, we have a random process at the vertices and a deterministic movement
along the edges [4].

The explicit idea1 of quantum walks2 (QWs) first appeared in 1993 [7] as a possible quantum
version of classical RWs (see also [8]). Nowadays the concept has been largely extended [9–11],
although still being based on the above classical RWpicture of an underlying lattice structure. QWs are
commonly defined on discrete spaces (graphs) and classified into two groups, depending on whether
time is a continuous [12] or a discrete variable [13]. For the discrete case – our focus here – the two
main formulations (although unitarily equivalent [4,14,15]) are the coin and scattering models. Very
briefly, coin QWs (CQWs) consist of unitary quantum evolutions for systems whose Hilbert space
eigenbasis can be associated to the vertices of a graph. Furthermore, ‘inner’ degrees of freedom (similar
to spins) play the role of coin states |σ ⟩, responsible for directing (through the action of proper coin
operators on these |σ ⟩) the propagation of a state |ψn−1⟩ (for n = 1, 2, . . .) along the graph vertices,
resulting in |ψn⟩ [13].

The version we shall address in this contribution are scattering QWs (SQWs). In this case, the
dynamics is defined on the graph edges (lattice bonds) and at any time step the state suffers scattering
due to the graph vertices (lattice sites). In fact, at time step n the system full |ψn⟩ is written as the
superposition of the basis states – associated to the individual bonds – ‘weighted’ by the transmission
and reflection amplitudes — associated to the distinct sites scattering matrices [14]. This formal
construction has a nice analogy with light beams in an interferometric network. Each site acts as a
beam splitter and the edges are like optical axis (allowing propagation in both directions). Also, each
beam splitter can be attached to a different number of optical axis, so the web does not need to be
regular. A brief review of SQWs mathematical description (in the 1D case) is presented in Section 2.

Given their relative simplicity – compared to more ‘traditional’ quantum system models – but
yet displaying most of the basic phenomenology associated to quantum mechanics [16–20], QWs
find innumerous usages [9,11,21]. For instance, it has been shown that primitive quantum computers
could be fully based on QWs [22–24]. So, they are relevant tools in the development of algorithms for
quantum computation [10]. Other examples of problems addressed as QWs are: electronic transport
in different materials [25,26], photosynthetic processes [27,28], disorder in non-interacting bosonic
and fermionic systems [29], quantum phase transition in optical traps [30], spin states transfer in
interacting systems [31], Bose–Einstein condensates [32], and percolation graphs [33,34], to name just
a few. As for actual physical implementation, concrete QWs have been proposed in terms of photon
interferometers [35] and waveguides [36–38], neutral atoms [39–41] and ions [42–44] trapped in
optical lattices, quantum dots [45], and nuclear-magnetic-resonance processors [46].

Most of the foreseen applications and experimental constructions for QWs are thought for the
1D case, in which from any site there are only two possible ‘‘directions to go’’ (so, the coordination
number is k = 2). Nonetheless, effects like topological phases and transitions observed in 1D [47–50]
conceivablywould display a broader range of features in structureswith k > 2, specially for k odd [51]
(as explicit examples for k = 3 see, e.g., [52–54]). Moreover, different works have demonstrated
a much richer phenomenology for QWs in two and higher dimensions, as in square (k = 4) and
hypercube (k = 2N for ND) lattices [4,55–59]. In fact, as pointed out in [60], QWs are natural models
to describe electronic excitations (of proper wave numbers3 ) in distinct crystalline lattices [61].

1 Interestingly, the quantum walk concept is somehow already present in Feynman’s pioneer work discretizing the kernel
of the Dirac equation, see, e.g., [5]. Also, a similar construction to quantum walks has been proposed in 1996 [6], but in the
context of the quantum cellular automata.

2 The original term proposed in [7] was ‘‘quantum random walks’’, but today the more usual practice is to call such family
of systems just ‘‘quantum walks’’.

3 Basically, the wavelengths must be small enough so that the ‘local’ topology (i.e., that around individual sites) becomes
relevant for the transport properties.
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