
Annals of Physics 391 (2018) 183–202

Contents lists available at ScienceDirect

Annals of Physics

journal homepage: www.elsevier.com/locate/aop

Polaron mobility obtained by a variational
approach for lattice Fröhlich models
Milan Kornjača, Nenad Vukmirović *
Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade,
University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

a r t i c l e i n f o

Article history:
Received 28 September 2017
Accepted 27 January 2018
Available online 21 February 2018

Keywords:
Polaron
Mobility
Electron–phonon interaction
Fröhlich interaction
Kubo’s formula

a b s t r a c t

Charge carriermobility for a class of latticemodelswith long-range
electron–phonon interaction was investigated. The approach for
mobility calculation is based on a suitably chosen unitary transfor-
mation of themodel Hamiltonianwhich transforms it into the form
where the remaining interaction part can be treated as a pertur-
bation. Relevant spectral functions were then obtained using Mat-
subaraGreen’s functions technique and charge carriermobilitywas
evaluated using Kubo’s linear response formula. Numerical results
were presented for a wide range of electron–phonon interaction
strengths and temperatures in the case of one-dimensional version
of the model. The results indicate that the mobility decreases
with increasing temperature for all electron–phonon interaction
strengths in the investigated range, while longer interaction range
leads to more mobile carriers.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

There is a strong interest to understand the effects of electron–phonon interaction on electrical
transport properties of semiconductors since it is the interaction mechanism that is present in every
material being in most cases the dominant mechanism that limits the charge carrier mobility. In the
case of semiconductors with wide bands and weak electron–phonon interaction (such as for example
conventional inorganic semiconductors GaAs or Si), charge carrier mobility can be described using
Bloch–Boltzmann theory [1–3] and it can be evaluated from electron–phonon scattering time and the
effectivemass of the carrier. Significant research efforts are currently devoted towards developing ab-
initio methods for calculation of mobility in this regime [4–10] which is a non-trivial task due to the
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necessity of taking a large number of points in the Brillouin zone to obtain accurate values of scattering
times [11,12] and due to the difficulties of including long-range interactionwith polar optical phonons
within such approach [13,14]. In the opposite limit of narrow bands and strong electron–phonon
interaction (which can be valid in some organic semiconductors based on small molecules) charge
carrier transport is typically modeled using hopping theories [15], with hopping rates between the
molecules evaluated usingMarcus formula [16,17] or its generalizations [18–20], which consider only
local electron–phonon interaction.

It is of significant importance to develop methods that can be used to evaluate charge car-
rier mobility beyond these two limiting regimes [21–24]. Due to difficulties in treating electron–
phonon interaction of intermediate strength, the efforts to develop such methods are more scarce.
These methods are usually based on a unitary transformation of the model Hamiltonian [25,26]
and in practice these are applied to Hamiltonians with local electron–phonon interaction (Holstein
model) [26,25] or short-range non-local interaction [27–29] (Peierls model). More recently, Quantum
Monte Carlo techniques were also applied to evaluate the mobility in the Holstein and the Peierls
model [30,31].

Themain aim of this work is to develop amethod for evaluating themobility in systemswith long-
range electron–phonon interaction for a wide range of interaction strengths and temperatures. We
consider a lattice model with long-range electron–phonon interaction of Fröhlich type and evaluate
the mobility using an approach that combines unitary transformation of the Hamiltonian, Matsubara
Green’s function technique for evaluation of relevant spectral functions and Kubo’s formula for
calculation of mobility. The manuscript is organized as follows. In Section 2 we introduce the model
Hamiltonian that is the subject of this work. In Section 3 we present the unitary transformation that
is used to transform the Hamiltonian to the form where the remaining interaction can be treated
using perturbative techniques, we derive the equations for optimal parameters of the unitary trans-
formation and present numerical results for bandwidth renormalization. Equations for self-energies
obtained using Matsubara Green’s function technique are presented in Section 4 along with the
numerical results for polaronic spectral functions. In Section 5 we present the derivation of mobility
based on Kubo’s linear response theory and numerical results for a wide range of temperatures and
electron–phonon coupling strengths. Concluding remarks are given in Section 6.

2. Model Hamiltonian

We consider the following Hamiltonian that describes a periodic system of electrons and phonons
that interact via long-range interaction:

H = −

∑
m,n

tm−nc†
mcn +

∑
n

h̄ω0b†
nbn−

−

∑
m,n

h̄ω0fm−nc†
ncn(b

†
m + bm).

(1)

In Eq. (1) the vectors m and n label the sites of an infinite lattice, cm, c†
m, bm, and b†

m are respectively
annihilation and creation operators for electrons and phonons, tm−n is the electronic transfer integral
that quantifies the electronic coupling between sites m and n, h̄ω0 is the energy of a phonon, while
fm−n are dimensionless electron–phonon coupling parameters.

The Hamiltonian H considers a single electronic state per period of the system and a single
dispersionless phononband.While accuratemodeling of realmaterialswould certainly require amore
elaborate Hamiltonian, we believe that it is essential first to address the properties of this relatively
simple Hamiltonian. In the case when coupling parameters fm−n are zero except for m = n the
Hamiltonian reduces to a widely studied Holstein Hamiltonian [32]. In this work, we address a rather
different scenario when fm−n is long-ranged.

Long-ranged electron–phonon interaction occurs as a consequence of interaction of electrons with
a polarization field created from optical phonons in a polar material. To be more specific, an optical
phonon at site m creates a dipole moment pm = pmem, where pm is its intensity and em the unit
vector in the direction of the dipole. Classical electrical potential at site n created by this dipole
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