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a b s t r a c t

Widespread use of composites for structural applications is hindered by the inability to fully understand
and predict the materials response. The uncertainty in composite materials response is largely due to var-
iability in the initiation and propagation of damage. To develop new tools for design with composite
materials, techniques for identifying damage modes during operation are needed. While there is a large
body of work on analysis of acoustic emission (AE) from different materials and different loading cases,
the current research is focused on applying unsupervised learning for separating AE into a maximum
number of groups with distinct evolution. AE data was collected during tensile and bending experiments
on carbon fiber reinforced epoxy specimens with different material configurations. The unsupervised
learning algorithms successfully identified AE groups with distinct initiation and evolution. With damage
mechanisms inferred from load response and from deformation fields obtained with digital image corre-
lation (DIC), strong correlations between the behaviors of the groups and the damage mechanisms were
observed and are discussed.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Composite materials are used extensively in the aerospace
industry for their high strength and stiffness to weight ratios and
the ability to tailor materials for desired properties. Only relatively
recently has the automotive industry become more interested in
composite materials for improved fuel economy by light-weighting
and improved crash performance by energy absorption. However,
unlike metals, fiber-reinforced composites experience many dam-
age types, such as matrix cracking, fiber/matrix pull-out, fiber
breakage, and delamination. A major challenge to wide-spread
implementation of composites is this wide variety of damage
mechanisms associated with composite materials and understand-
ing how those mechanisms initiate and progress. The complicated
failure processes in composites precludes the use of current design
methodologies.

To develop new and necessary tools for designing with compos-
ite materials, it is critical to quantify the damage state at different
load levels. Knowing the damage state would allow for an iterative
design process and ultimately lead to high fidelity predictive tools.

Several methods have been investigated to measure the damage
state. For carbon fiber reinforced polymers (CFRPs), these methods
can be broadly grouped into the following categories: bulk electri-
cal property sensing, embedded sensing, and surface-based sens-
ing. Electrical methods utilize the fact that initiation and
progression of damage cause changes in conduction paths which
in turn affects bulk electrical resistance and capacitance [1,2,3].
The most common embedded sensing method is with fiber Bragg
gratings (FBGs) which monitor changes in internal strain [4]. In
addition, FBGs can sense vibration resulting from damage events
[5]. Surface sensing techniques typically require interpretation of
either surface deformation or vibration. Surface deformation can
indicate localized stiffness reduction and, hence, damage [6]. Sur-
face vibrations can be measured in the form of acoustic emission
(AE), which are stress waves resulting from rapid release of strain
energy. These waves can be sensed at specimen surfaces with pie-
zoelectric sensors and relevant data acquisition and interpretation
apparatus [7].

AE from material damage in composites is relatively easy to
monitor and record. However, efficient and effective analysis is still
challenging. Efforts have been made to predict failure load based
on AE. For example, to predict the final failure load based on AE
from loading a sample to about half its expected failure load,
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Sasikumar did supervised learning with an artificial neural net-
work [8]. Others used AE to estimate the location of damage in rel-
atively large structures. Locating damage can be challenging due to
the existence of multiple wave modes which propagate with differ-
ent velocities [9]. The directional effects on the properties of acous-
tic waves travelling in anisotropic materials also adds to the
location estimation challenges.

A different class of AE analyses aims to find the acoustic signa-
ture of damage mechanisms. This type of AE analysis involves sep-
arating AE signals into groups that represent different damage
mechanisms. This process is called clustering. Clustering involves
three components. The first is choosing the signal features to base
clustering on. The second is identifying the right number of clus-
ters. The third is the technique with which clustering is achieved.
These three topics are discussed next.

Different aspects of the AE signals can be used for clustering.
Clustering can be based on temporal AE signals. As shown in
Fig. 1, relevant temporal features include signal amplitude, dura-
tion, energy, and rise time. But AE signals generated by damage
(microcracks, debonding, etc.) are generally not stationary [10].
Therefore, clustering is also often based on other signal features,
which are extracted from the signal’s frequency domain [10]. Such
features include the frequency at maximum amplitude and the fre-
quency at center of area under frequency response curve. Fre-
quency domain features are obtained from fast Fourier transform
or a more general wavelet transform. Wavelet analysis involves
breaking down the signal into a series of orthogonal basis functions
of finite length called wavelets instead of breaking it down into

harmonic functions [11]. Extra indices can be calculated from com-
binations of the previous temporal and frequency domain features.
These extra indices include average frequency and slope, which is
the ratio of amplitude to rise time. Besides focusing on pure AE fea-
tures, functions combining AE signal features and mechanical
information have been used to understand damage progression.
For instance, Bakhtiary used the logarithm of the ratio between
strain energy and acoustic energy to identify the onset of delami-
nation and its progression in glass fiber/epoxy composite material
[12].

Clustering generally requires specifying a desired number of
clusters. There exist many cluster validity techniques for determin-
ing an optimal number of clusters. These techniques are numerical
measures of how unique the resulting clusters are. These numeri-
cal techniques include the Silhouette method, Dunn’s (DN) index,
Davies–Bouldin (DB) index, Krzanowski–Lai index, Hartigan index,
and the Calinski–Harabasz index [13]. The DB index is proportional
to the ratio of scatter within clusters to their separation. The DN
index is the ratio of the minimum distance between two events
of different clusters to the maximum distance between events of
the same clusters [14]. Each index should have a certain behavior
at the optimum number of clusters. For instance, a minimum DB
index, a maximum DN index, or a sudden change in either of the
two is expected to indicate the optimum number of clusters [14].
The numerical techniques, however, sometimes fail to predict the
right optimum number of clusters. For instance, Maulik and Ban-
dyopadhyay showed that even for well-separated clusters, a more
complicated index was needed for successful prediction [14].

The clustering process can be achieved through automated data
mining which recognizes patterns in complex data sets [15]. This
data mining process will henceforth be called unsupervised learn-
ing. Unsupervised learning has a wide range of applications includ-
ing marketing problems [16], motion analysis [17], and speech
recognition [18]. Several unsupervised learning techniques exist.
One famous technique is the k-means method which formulates
the clustering problem as an optimization problem to which a
numerical solution can be reached through an iterative process
[19]. Another technique is the self-organizing map, which is an
application of an artificial neural network that maps the data space
onto a two dimensional space where similar data items are located
close to each other on the map [13]. Other techniques assume the
data follows a distribution density function. Although following a
density function is not typically assumed for finding the AE signa-
ture of damage, Farhidzadeh et al. developed a criterion for crack
classification by assuming that AE data followed a Gaussian distri-
bution [20].

In this paper, numerical clustering-quality indicators are not
used for finding the optimum number of clusters which is enforced
during clustering. Instead, the maximum number of distinct AE
groups is sought. Distinct groups are those that show distinct evo-
lution throughout loading and have statistically representable
numbers of observations. Gaussian distribution is assumed for
clustering as it was tested on artificial data and found to have bet-
ter performance than other techniques. This paper is organized
into three main sections. The experimental section provides details
about the samples and testing equipment used to acquire features
of AE signals as well as the deformation and kinetic responses that
will represent damage. The section on unsupervised learning
explores and compares different methods for choosing the number
of clusters and unsupervised learning technique. Then, a separate
section presents and discusses the results of clustering performed
on AE collected from experiments with CFRP composites. Several
distinct groups were separated and correlated to damage mecha-
nisms as inferred from load response and from deformation fields
obtained with digital image correlation.
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Fig. 1. A schematic AE signal with several AE signal features identified.
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