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a b s t r a c t

Recently, the nodal domain counts of planar, integrable billiards
with Dirichlet boundary conditions were shown to satisfy certain
difference equations in Samajdar and Jain (2014). The exact solu-
tions of these equations give the number of domains explicitly. For
complete generality, we demonstrate this novel formulation for
three additional separable systems and thus extend the statement
to all integrable billiards.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The classical billiard is a dynamical system consisting of a point particle moving freely in an enclo-
sure, alternating betweenmotion along a straight line and elastic reflections off the boundary, dictated
by Snell’s law [1–4]. This sequence of specular reflections is captured by the billiard map, which com-
pletely describes the motion of the particle. These simple systems exhibit a wide range of dynamical
behavior from order to chaos [5–7], depending on the shape of their boundary. Classically speaking, an
integrable billiard is defined to be one in which the number of constants of motion equals the number
of degrees of freedom. A long-standing conjecture by Birkhoff states that among all billiards inside
smooth convex curves, ellipses are characterized by integrability of the billiard map [8]. On the other
hand, examples of their ergodic counterparts (for example, Bunimovich stadium [9], dispersive Sinai
billiards [10]) are equally well-known [11].

Over the last two decades, the quantum analogues of these systems, quantum billiards, have
been experimentally realized in gated, mesoscopic GaAs tables [12], microwave cavities [13] and
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ultracold atom traps [14,15]. The eigenfunctions of these planar billiards organize themselves into
regions, or domains, with positive and negative signs, often in remarkably complicated geometric
shapes. Formally, suchnodal domainsmaybedefined as themaximally connected regionswherein the
wavefunction does not change sign. Academic interest in various statisticalmeasures pertaining to the
number of nodal domains, ν, was piqued [16] in light of discoveries such as a new criterion for chaos
in quantum mechanics [17] and the presence of geometric information about the system in its nodal
count sequences [18]. Experimentally, nodal domains have also been the focus of much attention as
documented in Refs. [19–21]. Unfortunately, quantifying the nodal patterns is a major challenge since
it is extremely hard to discern any order when ν is arranged in an ascending order of energy.

In principle, the problem seems (deceptively) straightforward—for each billiard of interest, we
need only solve the Schrödinger equation in appropriate coordinates, and count the domains as a
function of the two quantum numbers m and n of the system. However, in order to arrive at a
functional form for ν, it was recently discovered [22] that it is more fruitful to analyze the differences
∆kn ν(m, n) = νm+kn,n − νm,n, k ∈ N, instead. The proposition put forth therein was that for any
integrable billiard in two dimensions, ‘‘one of ∆knν (m, n) = Φ(n) and ∆2

knν (m, n) = Φ(n) ∀m, n
holds for some Φ : R → R, which is determined only by the geometry of the billiard’’. This
difference-equation formulation, which proves to be of great practical utility in determining ν
analytically (especially in the study of non-separable polygons, cf. [23]), was illustrated in [22] for
a few separable and all non-separable, integrable polygonal shapes. The natural question that one
then asks is: can all integrable, planar billiards be similarly characterized by a difference equation in
their nodal domain counts? The answer, as we show, is in affirmative.

For definiteness, we demonstrate that the statement can be generalized to all planar, integrable
billiards, which includes both convex billiards, with smooth boundaries, and billiards in polygons.
Since the two-dimensional Helmholtz equation is separable in only four coordinate systems – the
Cartesian, polar, elliptic and parabolic coordinates [24,25] – the additional geometries which must
be considered are the elliptical billiard, the system of two confocal parabolas and various annular
regions of the above. For all such separable systems, k = 1 and this may be regarded as a fingerprint
of separability in the difference equations themselves.

2. Circular annuli and sectors

The circle is but a special case within the class of elliptical billiards and is described in two-
dimensional polar coordinates byD = {(r, θ) : 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π}. The Helmholtz equation for
this system, r ∂r(r ∂rψ) + ∂2θ ψ + k2r2ψ = 0, can be separated into radial and angular components,
where the radial solution is a cylindrical Bessel function of the first kind, denoted by Jm(kr), m being
the angular quantumnumber, and the angular function is simply exp(im θ) [26,27]. In Ref. [22], it was
shown that for the circular billiard,∆nν(m, n) = νm+n,n −νm,n = 2n2, which gives νm,n = 2mn. Here,
we study the annular regions of this billiard where the domain is restricted, first in the radial variable
and then, in both the radial and angular variables. For the annulus where θ ∈ [0, 2π ], the quantum
number m so obtained is integral and thus the general solution to the radial Helmholtz equation is a
linear combination of the mth-order Bessel functions of the first and second kind, Jm(kr) and Ym(kr).
Assuming that the annular region is enclosedwithin the radii r1 and r2, the boundary conditionsψ = 0
for r = r1, r2 suggest the form

ψm,n(r, θ) = A

Jm(knr) Ym(knr1)− Jm(knr1) Ym(knr)


cos(mπθ), (2.1)

where A is a normalization constant and kn is the value of k such that r2 is the nth zero of the radial
solution in the domain of its definition (excluding the zero at r1). Adopting these conventions form and
n, the recurrence relation satisfied by the nodal domains is νm+n,n − νm,n = 2n2, and on scrutinizing
individual cases, the formula νm,n = 2mn is obtained. These results are identical to those obtained
for the full circle and the corresponding examples have been illustrated in Fig. 2.1(a). On the other
hand, for regions where the domain is restricted in the radial as well as the angular variable, the
Dirichlet boundary conditions become analogous to those imposed on a rectangular billiard, which
can be argued as follows. In the cases where θ runs from 0 to 2π , the requirement of periodicity in θ
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