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h i g h l i g h t s

• Logical inference applied to relativistic, massive, charged, and spinless particle experiments leads to the
Klein–Gordon equation.

• The relativistic Hamilton–Jacobi is scrutinized by employing a field description for the four-velocity.
• Logical inference allows analysis of experiments with uncertainty in detection events and experimental

conditions.
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a b s t r a c t

The logical inference approach to quantum theory, proposed ear-
lier De Raedt et al. (2014), is considered in a relativistic setting. It
is shown that the Klein–Gordon equation for a massive, charged,
and spinless particle derives from the combination of the require-
ments that the space–time data collected by probing the particle
is obtained from the most robust experiment and that on average,
the classical relativistic equation of motion of a particle holds.
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1. Introduction

The inception of quantum theory was one of taking leaps. This is illustrated by e.g. Schrödinger’s
paper [1] in which he proposes his celebrated wave equation. In this article [1] Hamilton’s principal
function S is postulated to take the form S = k lnψ with k a constant and is then substituted in
the Hamilton–Jacobi equation (HJE). Upon variation of the resulting quadratic functional with respect
to ψ (which Schrödinger later justifies using Huygens’ principle [2]) an equation linear in ψ , now
known as the Schrödinger equation, was obtained. The derivation of the Klein–Gordon equation [3–7]
is essentially identical to that of the Schrödinger equation namely, an action Ansatz is substituted
in the relativistic Hamilton–Jacobi equation, and after variation of the resulting quadratic functional
with respect to ψ , the relativistic analogue of the Schrödinger equation is obtained [3–7].

Because of the ad hoc assumptions involved in obtaining these equations, standard quantum
mechanics textbooks usually present the formalism of quantum theory as a set of postulates (see
e.g. Refs. [8–11]) and considerable activity focuses on eliminating some of these postulates [12–19].
Instead of starting from a set of postulates, the current work presents an alternative derivation of
the relativistic wave equation based on the principles of logical inference (LI) [20–23]. Specifically,
we demonstrate how the Klein–Gordon equation for a massive, charged and spinless particle follows
from LI based on the analysis of data recorded by a detector, thereby extending earlier work [24–27]
to the relativistic domain.

The key concept in LI is the plausibility [23], a mental construct which quantifies e.g. the chance
that a detection event occurs. In general, the degree of plausibility is expressed by a real number
in the range of 0 and 1 [23]. The algebra of LI facilitates plausible reasoning in the presence of un-
certainty in a mathematically well-defined manner [20–23]. In real experiments there is not only
uncertainty about the individual detection events but there obviously is also uncertainty in the con-
ditions under which the experiments are carried out. Inevitably, the conditions of the experiment
will vary whenever the experiment is repeated. But if the experimental data is to be reproducible,
the experiment must be robust (to be quantified later) with respect to small changes in the condi-
tions under which the experiment is being performed. Earlier work has shown that the equations of
non-relativistic quantum theory can be obtained by analyzing such robust experiments [24–27];most
notable are the Schrödinger [25] and the Pauli equation [26]. Importantly, the requirement that the
experiment is to be robust implies that the plausibility must be viewed as an objective assignment
(i.e. conditional probability) rather that a subjective one [25]. The present work extends this approach
to the relativistic domain: it shows how the Klein–Gordon equation [3,7] for a massive, charged, and
spinless relativistic particle emerges by an analysis similar to the one employed in Refs. [25,26].

2. Logical inference approach

2.1. Particle detection experiment

Consider an experiment in which a particle source and detectors are located at fixed positions
relative to the laboratory reference frame. The source emits a particle that interacts with one of the
detectors and triggers a detection event that yields data in the form of three spatial coordinates
r = (x, y, z) of the detector and the clock time t at which the event occurred. The experiment is
considered to be ideal in the sense that every emitted particle triggers one and only one detector.

The experiment is repeated N times, meaning that we let N particles pass through the detector.
Each time a particle is created, the (laboratory) clock time is reset. We label the particles and the
corresponding data by the index n = 1 . . .N and denote the spatial and temporal resolution by ∆s
and∆t , respectively. As particle n passes through the detector, the latter produces a time stamp tn and
a vector of spatial coordinates rn = (xn, yn, zn), which because of the limited resolution, correspond
to the time-bin jn = ceiling(tn/∆t) and space-bin kn = ceiling(rn/∆s) where, element-wise, the
function ceiling(x) returns the smallest integer not smaller than x. In practice the number of time-
bins and space-bins is necessarily finite. Therefore we must have 0 ≤ jn ≤ J and (0, 0, 0) ≤ kn ≤

K = (Kx, Ky, Kz), where J , Kx, Ky and Kz are (large) integer numbers.
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