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a b s t r a c t

We first review the accelerating, rotating and charged Pleban-
ski–Demianski (PD) black hole, which includes the Kerr–Newman
rotating black hole and the Taub-NUT spacetime. The main feature
of this black hole is that it has 4 horizons like event horizon, Cauchy
horizon and two accelerating horizons. In the non-extremal case,
the surface area, entropy, surface gravity, temperature, angular ve-
locity, Komar energy and irreduciblemass on the event horizon and
Cauchy horizon are presented for PD black hole. The entropy prod-
uct, temperature product, Komar energy product and irreducible
mass product have been found for event horizon and Cauchy hori-
zon. Also their sums are found for both horizons. All these rela-
tions are dependent on the mass of the PD black hole and other
parameters. So all the products are not universal for PD black hole.
The entropy and area bounds for two horizons have been investi-
gated. Also we found the Christodoulou–Ruffini mass for extremal
PD black hole. Finally, using first law of thermodynamics, we also
found the Smarr relation for PD black hole.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In 1981, Bekenstein [1] proposed the universal bound on the entropy of a macroscopic object of
maximal radius R bearing energy E in the form S ≤

2πER
h̄ . But the derivation of the entropy bound

was criticized by Unruh, Wald and Pelath [2–4]. Bekenstein refuted their criticism and showed that
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buoyancy is so negligible such that it does not spoil the entropy bound derivation [5,6]. In various
occasions, this type of bound has been found in some literatures by the same author [7–9]. In 1992,
Zaslavskii [10] modified the entropy bound by incorporating the charge of a black hole. After that
Bekenstein andMayo [11], Hod [12,13] and Linet [14] obtained an upper entropy bound for a charged
Reissner–Nordstrom black hole, in the form S ≤

2π
h̄


E2R −

e2
2


, where e is the electric charge of the

black hole. This result agrees to an earlier finding by Zaslavskii [10] in another context. However, the
fact that this entropy bound for a charged system is necessary to uphold the GSL has been challenged
as well [15]. A tighter bound on entropy for objects with angular momentum has also been derived by
Hod [12]. Referring to Hojman and Hojman’s [16] integrals of motion for a neutral object with spin s

moving on a Kerr black hole background, Hod [12] obtained the entropy bound S ≤
2π
h̄


E2R2

− s2
 1

2 .
Wang and Abdalla [17] studied the entropy bound for a spinning object falling into anti de Sitter
(AdS) black holes including (3 + 1)-dimensional Kerr-AdS black holes and (2 + 1)-dimensional
Banados–Teitelboim–Zanelli (BTZ) black holes. The entropy bounds for these black holes are identical
with the Kerr black hole. Linet [18] and Qiu et al. [19] obtained the upper bound of the entropy on
the more general Kerr–Newman black hole as in the form S ≤ 2π


µR −

e2
2


, where µ is related

to total energy, angular momentum, charge, radius and mass of the black hole. Jing [20] obtained
the Cardy–Verlinde formula and the entropy bounds in Kerr–Newman-AdS4/dS4 black hole. The
Bekenstein–Verlinde-like entropy bound in Kerr–Newman-AdS4 black hole [20] is S ≤

2π
n


ER −

e2
2H


and the entropy bound in Kerr–Newman-dS4 black hole [20] is S ≤

2π
H


MR −

e2
2


, whereH = 1−

a2

l2
,

a is the angular momentum and l is related to the cosmological constant Λ.
The product of horizon areas or the entropy product of horizons of black hole is very important tool

in the study of black hole physics. The two horizons of the black hole are namely inner/Cauchy horizon
(H−) and outer/event horizon (H+). Now it is known that the Cauchy horizon (H−) is an infinite
blue-shift surface, but the event horizon (H+) is an infinite red-shift surface [21]. For stationary
axially symmetric black holes, the entropy product of horizons is often independent of themass of the
black hole [22–26]. Such products depend on the charge and angular momentum of the black hole. In
some cases, this relation may be depend on the mass of the black hole [27–29]. So the entropy sum
and other thermodynamic relations have been studied by some authors [30–34]. In some cases, these
relations may be independent of black hole mass and some cases, these depend on black hole mass.
The regular axisymmetric and stationary spacetime of an Einstein–Maxwell systemwith surrounding
matter have a regular Cauchy horizon (H−), which always occurs inside the event horizon (H+) if
and only if the angular momentum J and charge Q of the black hole do not vanish simultaneously. In
this case, the Cauchy horizon (H−) becomes singular and tends to a curvature singularity when J and
Q tend to zero [35–37]. In Boyer–Lindquist coordinates, the existence of Cauchy horizon describes
that the stationary and axisymmetric Einstein–Maxwell electro-vacuum equations are hyperbolic in
the interior vicinity of the event horizon (H+). The two horizons H+ and H− describe the future
and past boundary of this hyperbolic region. If the Cauchy horizon exists i.e., if J and Q do not vanish
simultaneously, then the product of the entropy (area) of the horizonsH± for the Kerr–Newmanblack
hole is independent of the mass of the black hole, but depends on the angular momentum J and the
charge Q explicitly [30].

Based on the entropy product and entropy sum, very recently, Xu et al. [38] obtained entropy
(area) bounds of event horizon (H+) and Cauchy horizon (H−) for Kerr black hole, Kerr–Newman
black hole in Gauss Bonnet gravity and Kerr–Taub-NUT black hole. They have actually taken the
Penrose-like inequality for the upper area bound of the event horizon (H+). They have also found that
(i) the electric chargeQ diminishes the physical bound of entropy (area) for event horizon (H+), while
it enlarges that for Cauchy horizon (H−); (ii) the angular momentum J enlarges them for Cauchy
horizon (H−), while it does nothing with that for event horizon (H+) and (iii) the NUT charge n
always enlarges them for both event horizon (H+) and Cauchy horizon (H−). With the ideas of their
work, we now formulate the entropy bounds on event horizon (H+) and Cauchy horizon (H−) for
more general accelerating, rotating and charged Plebanski–Demianski black hole. We also determine
the entropy product, entropy sum, sumof the angular velocities, temperature–entropy relations, black
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