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a b s t r a c t

The BKL conjecture, stated in the 1960s and early 1970s by Belin-
ski, Khalatnikov and Lifschitz, proposes a detailed description of
the generic asymptotic dynamics of spacetimes as they approach
a spacelike singularity. It predicts complicated chaotic behaviour
in the generic case, but simpler non-chaotic one in cases with sym-
metry assumptions or certain kinds of matter fields.

Here we construct a new class of four-dimensional vacuum
spacetimes containing spacelike singularities which show non-
chaotic behaviour. In contrastwith previous constructions, no sym-
metry assumptions are made. Rather, the metric is decomposed
in Iwasawa variables and conditions on the asymptotic evolution
of some of them are imposed. The constructed solutions contain
five free functions of all space coordinates, two of which are con-
strained by inequalities.

We investigate continuous and discrete isometries and com-
pare the solutions to previous constructions. Finally, we give the
asymptotic behaviour of the metric components and curvature.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Singularities in general relativity

When Albert Einstein presented his theory of General Relativity in 1915 he did not give any non-
trivial exact solutions to its field equations. Due to the complicated non-linear structure of the equa-
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tions, he did not expect any to exist and calculated physical predictions using perturbation the-
ory [1]. To his surprise, less than a month later, Karl Schwarzschild sent him a letter containing the
Schwarzschild metric, a spherically symmetric solution of the vacuum Einstein equations. It is given,
in Schwarzschild coordinates, as

ds2 = −


1 −

2m
r

−1

dt2 +


1 −

2m
r


dr2 + r2(dθ2

+ sin2 θ dϕ2).

This solution contains, in these coordinates, an apparent singularity at r = 2m where the tt compo-
nent of the metric diverges. This is the event horizon, which Schwarzschild set as the origin of his
coordinate system. The solution also contains a real singularity at r = 0 which was found by David
Hilbert in 1917. Hilbert considered both singularities real, as they could not be removed by an every-
where smooth and invertible coordinate transformation. In hindsight his requirement was too strict:
The fact that in Schwarzschild coordinates the tt component of the metric diverges at r = 2m simply
means that these coordinates are badly chosen, indeed to transform from coordinates which do not
show the apparent singularity to Schwarzschild coordinates requires a transformationwhich diverges
at r = 2m.

In 1921 and 1922 Paul Painlevé and Allvar Gullstrand independently discovered a spherically sym-
metric vacuum solution containing only a single singularity at r = 0 [2,3]. It was not realized at the
time that this solution can be obtained from the Schwarzschild one by a coordinate transformation,
i.e. it describes the same physical spacetime. This was finally discovered by Georges Lemaître in 1932,
who also correctly identified the r = 2m singularity as an apparent singularity caused by the choice
of coordinates [4]. The singularity at r = 0 cannot be removed by a coordinate transformation as
the Kretschmann scalar, given by Rαβγ δRαβγ δ , diverges there. This is a scalar quantity, constructed by
contracting all indices of the Riemann tensor with itself, and is therefore independent of the chosen
coordinate system.

Despite this advance, the status of real singularities, such as the one appearing in the Schwarzschild
or the cosmological FLRW solutions, was unclear. It was widely believed that they were an artefact
of the symmetry assumptions made to obtain explicit solutions and had no relevance for the real
world [5]. The ideawas that, similarly to theNewtonian case, ifmatterwas not perfectly symmetrically
rushing towards a central point, the resulting angular momentum would prevent the formation of a
singularity.

The singularity theorems of Penrose and Hawking [6,7] proved the opposite. They state that, given
a trapped surface, an energy condition, and an assumption on the global structure of spacetime (e.g. no
closed timelike curves), a singularity, in the sense of geodesic incompleteness, has to form. As small
perturbations of an explicit solution containing a singularity would preserve the trapped surface, the
perturbed solution also contains a singularity. These theorems, however, do not give any information
about the nature of the predicted singularities, or about the behaviour of themetric near them. Indeed
they do not even predict diverging curvature, only the existence of some geodesics, which cannot be
extended beyond a finite value of the affine parameter along them.

1.2. The BKL conjecture

In a series of works, beginning in 1963, Belinski, Khalatnikov and Lifschitz (BKL) conjectured, based
on heuristic arguments, that the dynamics of a generic spacetime containing a spacelike singularity
would drastically simplify when the singularity is approached [8,9]. They claimed that time deriva-
tives of the metric would dominate compared to space derivatives, causing different spatial points to
effectively decouple and turning the Einstein equations into a system of ODEs at each point. The solu-
tion of these ODEs is a generalization of the Kasnermetric, an explicit, homogeneous (but anisotropic)
solution of the Einstein equations describing a spacetime which expands in some directions and con-
tracts in others. It is given by

ds2 = −dt2 +
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, (1.1)
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