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a b s t r a c t

It is shown that fundamental solutions Kσ (x, y; t) = ⟨x|e −iHσ t
|y⟩

of the non-stationary Schrödinger equation (Green functions, or
propagators) for the rational extensions of the Harmonic oscilla-
tor Hσ = Hosc + ∆V σ are expressed in terms of elementary func-
tions only. An algorithm to calculate explicitly Kσ for an arbitrary
increasing sequence of positive integers σ is given, and compact
expressions for K {1,2} and K {2,3} are presented. A generalization of
Mehler’s formula to the case of exceptional Hermite polynomials is
given.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Propagator, or Green function of the non-stationary Schrödinger equation, completely describes
quantum dynamics in the Feynman path-integral formulation of quantummechanics [1]. In this work
we present new explicit examples of propagators in the case of one-dimensional Schrödinger equa-
tion. Namely, we study a quantum particle moving in the potential of a rationally extended Harmonic
oscillator [2]. In this case the evolution of wave packets is periodic due to the quasi-equidistant spec-
trum of the Hamiltonian [3]. Therefore such deformations of the Harmonic oscillator are known as
isochronous anharmonic oscillators [4]. It was proved in [5] that all monodromy free rational ex-
tensions of the Harmonic oscillator can be obtained by a finite chain of Darboux transformations.
In other words, each rational extension V σ of the Harmonic oscillator is defined by a sequence of
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levels σ = {σ [[1]], σ [[2]], . . . , σ [[−1]]}, σ [[i]] ∈ N which are deleted from the spectrum by Dar-
boux–Crum transformations [2].

The simplest rational extension is given by the potential [6]

V {1,2}
[x] =

x2

4
+ 2


1 + 2

(x2 − 1)
(x2 + 1)2


, (1)

which leads to the quasi-equidistant spectrum for the Hamiltonian [3], En = n +
1
2 , where n ∈

N0 \ {1, 2}.
Another example is the two-well perturbation of the oscillator

V {2,3}
[x] =

x2

4
+ 2


1 + 4x2

x4 − 9
(x4 + 3)2


(2)

with the quasi-equidistant spectrum, En = n +
1
2 , n ∈ N0 \ {2, 3}.

Darboux transformations represent a powerful tool to manipulate physical properties of one-
dimensional quantum systems, [6] and to construct (polynomial) supersymmetric extensions of
quantum mechanics (SUSY QM) [7,8]. Exactly solvable models obtained by Darboux transformations
are widely applied in nuclear physics, condensed matter physics, quantum optics, etc. [9–14].

The possibility to calculate propagators using ideas of supersymmetric quantummechanics and the
theory of solitons was considered in [15]. Quasiclassical approach to propagators and path integration
in SUSY QM was developed in [16]. In the case of shape-invariant potentials, SUSY relations between
propagators allow to calculate them explicitly [17,18]. We proposed a more general approach to
calculations of propagators in SUSY QM without restricting ourselves by shape-invariant potentials
in [19–22]. This approach can be extended and applied to the analysis of quantum tunnelling inmulti-
well potentials [23,24]. In the case of generalized Schrödinger equation the SUSY propagators were
calculated in [25]. Green functions of the Dirac equation were studied by means of SUSY QM in [26].

Here we re-examine results of [22], where propagators K {k,k+1} for the V {k,k+1} family of potentials
were defined bymeans of a generating function S(x, y; t|J)which contains the error-function.Wewill
extend this result to arbitrary sequencesσ . Moreover,wewill show that propagatorsKσ are expressed
by elementary functions only.

In the case of potentials (1) and (2) we will obtain the following propagators

K {1,2}(x, y; t) = e −2i tKosc(x, y; t)


1 −

4i sin t

xy − e i t


(1 + x2)(1 + y2)


, (3)

K {2,3}(x, y; t) = e −2i tKosc(x, y; t)

×


1 −

8i sin t

xy(x2y2 − 3)− 3(x2 + y2) cos t − 3i (x2y2 + 1) sin t


(3 + x4)(3 + y4)


, (4)

where the propagator of the Harmonic oscillator [1] is used

Kosc(x, y, t) =
1

√
4π i sin t

e
i [(x2+y2) cos t−2xy]

4 sin t . (5)

The paper is organized as follows. In the first section,we recall how to construct rational extensions
of the Harmonic oscillator. In the second section we first give an implicit SUSY-based expression for
propagators Kσ (x, y; t) in terms of generating function.

Analysing the generating function S(x, y; t|J)we will define a suitable rational ansatz to compute
propagators Kσ . In the general case, propagators for the rationally extended oscillators have the
following structure

Kσ (x, y; t) = Kosc(x, y; t)

σ [[−1]]+1
k=0

Q σ
k (x, y)e

−i kt

σ [[−1]]+1
k=0

Q σ
k (x, y)

(6)
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