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a b s t r a c t

To provide a solid support to a macroscopic framework devel-
oped to explicitly account for friction in thermodynamics, a ki-
netic description of frictional dissipation is developed. Using either
a dissipative Fokker–Planck equation for Brownian motion or a
Boltzmann equation with a friction-force term added, it is shown
that both approaches lead to the emergence of the macroscopic
thermodynamic relations that state the first and second laws with
friction. The analysis is directly applied to the problemof determin-
ing theminimumamount of heating generated bymemory erasure,
known in computer science as Landauer’s bound, and leads to a bet-
ter understanding of the energetics behind the latter. A generalisa-
tion of Boltzmann’s H theorem to include friction explicitly is also
recovered, and the thermodynamics of granular rotators acted by
a frictional torque and of radio-frequency (RF) current drive of fu-
sion plasmas, in which collisional drag is present, are addressed as
well. Various physics results are revisited employing the first and
second laws with friction that have been derived from the appro-
priate dissipative kinetic equations, lower bounds for entropy pro-
duction rates being derived both for granular rotators and for RF
current drive.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The incorporation of friction in thermodynamics has attracted interest since, at least, the
introduction of sliding friction as a paradigm for irreversible quasistatic processes [1], has often been
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the concern of practitioners in finite-time thermodynamics [2–6], as well as of more fundamentally
minded physicists and chemists [7–12], and has recently been the object of a more systematic effort
whereby frictional dissipation has been included explicitly in first- and second-law analysis [13],
which has lead to a framework that has already been applied to study the performance of thermal
engineswith friction [14]. Assuming an isothermal process and that friction-generated heating is fully
dissipated in the surroundings,1 or environment, the outcome of such an effort can be summarised
as2

dU = đQexch + đW0 − đWfric (1)
and

dS ≥
đQexch

T0
−

đWfric

T0
, (2)

(2) hereabove posing as an example of a refinement of the Clausius inequality [13]. Equations (1) and
(2) read, respectively, as the first and second laws for a system whose internal energy changes by dU
and entropy by dSwhen in thermal contactwith the environment,which is at an absolute temperature
T0 and from which the system receives the amount of heat đQexch and of work đW0 − đWfric, đWfric
representing that part of the work đW0 performed by the surroundings that is lost due to friction.
Note that, because of frictional dissipation, the net amount of heating energy đQ0 coming out of the
surroundings is not simply equal to đQexch but is here given instead by [13]

đQ0 = đQexch − đWfric. (3)
Even if only out of a pedagogical concern, it is always instructive and useful to support a

macroscopic frameworkwith anunderlying description at the atomic ormolecular level [15],3 whence
this article, whose purpose is precisely to rederive (1) and (2) from well-known kinetic equations.
These will be the Fokker–Planck and Boltzmann equations written with a frictional force term, the
former appropriate for systems not very far from equilibrium, so they can be modelled by a Brownian
type of motion, the latter suited for truly non-equilibrium situations [16,17]. Hence, in Sections 2 and
3, themacroscopic relations (1) and (2)will be shown to emerge by carrying out appropriate ensemble
averages over dissipative forms of the Fokker–Planck and Boltzmann equations, respectively. Caring
for the application of the framework here developed to actual physics problems, thus keeping an eye
on the applied side of physics, the analysis will be used to address an important question originally
raised in computer science, when trying to establish the limitations posed to computing performance
by the fundamental laws of physics: the so-called Landauer’s bound for heating generation due to
memory erasure [19–22]. In addition, and for completeness, a recent generalisation of Boltzmann’s H
theorem to systemswhere frictional dissipationmust be explicitly accounted forwill also be recovered
[23], the interest in deriving H theorems in kinetic theory accounting for non-conservative forces
being not new [24]. Addressed as well, in Section 4 and using both a Fokker–Planck and a Boltzmann
description, will be granular rotators, in which the effect of collisions with the particles of a granular
gas can be counteracted by a frictional torque and a viscous drag, andwhere frictional dissipation plays
an obviously crucial role [25–27], such devices falling under the classification of Brownian motors, or
ratchets [28]. A further example still, dealt with in Section 5, will be the case of radio-frequency (RF)
current drive of fusion plasmas, in which case the electron kinetics may be reasonably well described
in the high-velocity limit by a one-dimensional Fokker–Planck equation [29–33]. Finally, the paper
will come to its end in Section 6, where the analysis and results will be summarised and conclusions
will be presented.

1 More specifically, put α = 0 in [13] and set also T = T0 therein.
2 With α nil, (1) can be obtained by combining Eqs. (1), (13) and (20) given in the first of references [13], whereas (2) stems

directly from Eq. (45) in the second.
3 One has been tempted to call such a description microscopic but has been cautioned against it with the argument that the

canonical understanding of the latter is that the dynamics must be time-reversible Hamiltonian dynamics, which is obviously
not the casewith either the Fokker–Planck or Boltzmann equations, both of which, even if initially structured around Liouville’s
equation, derived from Hamilton’s equations of motion, sooner or later in their derivation involve some closure or coarse
graining that destroys time reversibility [16–18].
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