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a b s t r a c t

We present a technique to map an electronic model with local in-
teractions (a generalized multi-orbital Hubbard model) onto an ef-
fective model of interacting classical spins, by requiring that the
thermodynamic potentials associated to spin rotations in the two
systems are equivalent up to second order in the rotation an-
gles, when the electronic system is in a symmetry-broken phase.
This allows to determine the parameters of relativistic and non-
relativistic magnetic interactions in the effective spin model in
terms of equilibrium Green’s functions of the electronic model.
The Hamiltonian of the electronic system includes, in addition to
the non-relativistic part, relativistic single-particle terms such as
the Zeeman coupling to an external magnetic field, spin–orbit cou-
pling, and arbitrary magnetic anisotropies; the orbital degrees of
freedom of the electrons are explicitly taken into account. We
determine the complete relativistic exchange tensors, account-
ing for anisotropic exchange, Dzyaloshinskii–Moriya interactions,
as well as additional non-diagonal symmetric terms (which may
include dipole–dipole interaction). The expressions of all these
magnetic interactions are determined in a unified framework, in-
cluding previously disregarded features such as the vertices of two-
particle Green’s functions and non-local self-energies. We do not
assume any smallness in spin–orbit coupling, so our treatment is in
this sense exact. Finally, we show how to distinguish and address
separately the spin, orbital and spin–orbital contributions to mag-
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netism, providing expressions that can be computedwithin a tight-
binding Dynamical Mean Field Theory.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Establishing a rigorous connection between magnetic and electronic descriptions of condensed
matter systems is a challenging problem [1], whose formal statement can be formulated as follows:
Given a physical system described by means of a completely known electronic Hamiltonian, what
is the spin Hamiltonian (supposing that it exists) that most closely reproduces the spectral and
dynamical features of the system?

The answer to this important question is, of course, far frombeing straightforward. It iswell known,
e.g., that the spectrum of the lowest energy band of the single-orbital Hubbard model at half fill-
ing with nearest-neighbour hopping T and strong on-site Coulomb repulsion U can be effectively
represented in terms of the antiferromagnetic quantum Heisenberg Hamiltonian, as follows from
perturbation theory in small |T | /U . Dynamics of the electronic system, however, may involve hop-
ping transitions via intermediate higher bands, which are not captured in the Heisenberg Hamiltonian
alone, as well as real hopping processes become relevant at other electronic fillings (as a first correc-
tion, one should consider the T -J model [2]). A non-Heisenberg character of magnetic interactions
in itinerant systems was explicitly demonstrated, e.g., for the narrow-band Hubbard model on the
Bethe lattice beyond half filling [3]. The problem gets muchmore complicated if one attempts to map
more realistic electronic systems tomagneticmodels: for example, the natural extension of the single-
orbital Hubbard model is the multi-orbital Hubbard model [4–8], which includes more than just one
orbital per site, being a more appropriate description of relevant systems such as d and f materials.
Moreover, when both spin and orbital degrees of freedomof the electrons are taken into account, their
interplay gives rise to relativistic interactions such as spin–orbit coupling and anisotropies [9].

When no smallness in some characteristic energy parameters of the system can be assumed (such
as |T | ≪ U in the Hubbard model), the parameters describing the magnetic interactions in an elec-
tronic system can be defined by imposing the equivalence between the response to spin rotations of
a quantity characterizing the system and the analogous response computed for a reference classical
spin model [1]. In the case of symmetry-broken phases, the quantity which is generally considered
is the thermodynamic potential [10–12] computed for an out-of-equilibrium state or statistical su-
perposition, that is, either a pure state which is not an eigenstate of the electronic Hamiltonian, or a
statistical superposition of eigenstates whose weights do not depend only on their energies (which
would be the case for the Boltzmann distribution, with weights Wn(β) = e−βEn/Z , where En is the
eigenenergy of state n, β is the inverse temperature and Z is the partition function). The idea of using
a symmetry-broken state is similar in spirit to the Higgs mechanism: we need first to solve the non-
perturbative many-body problem and find the local moments (massive Higgs fields) and then use the
information contained in the single-particle Green’s functions and the vertex functions to find pertur-
batively the soft modes related with exchange interactions. It has been shown that the expressions
for the exchange parameters obtained by applying this approach in the non-relativistic case, within
the framework of time-dependent density functional theory in the adiabatic approximation, provide
an accurate expression for the spin-wave stiffness [13], while the computation of static properties
requires the introduction of constrainingmagnetic fields to equilibrate the non-equilibrium spin con-
figuration [14,15]. However, the corresponding corrections to the exchange parameters [15] are small
in the adiabatic approximation, that is, when typical magnon energies are small in comparison with
the Stoner splitting [13]. This justifies our approach. In the non-relativistic case, we have recently ex-
tended the treatment of Ref. [10] to systems driven explicitly out of equilibrium by time-dependent
external electric fields, by considering the potential arising from the non-equilibrium Kadanoff–Baym
partition function [16] (in Refs. [10–12,16] the electronic systemwasmodelled bymeans of themulti-
orbital Hubbard model).
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