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The Classical and Quantum Mechanics of a Particle on a Knot

V. V. Sreedhar*
Chennai Mathematical Institute, Plot H1, SIPCOT IT Park,
Siruseri, Kelambakkam Post, Chennai 603103, India

A free particle is constrained to move on a knot obtained by winding around a putative torus.
The classical equations of motion for this system are solved in a closed form. The exact energy
eigenspectrum, in the thin torus limit, is obtained by mapping the time-independent Schrédinger
equation to the Mathieu equation. In the general case, the eigenvalue problem is described by
the Hill equation. Finite-thickness corrections are incorporated perturbatively by truncating the
Hill equation. Comparisons and contrasts between this problem and the well-studied problem of a
particle on a circle (planar rigid rotor) are performed throughout.
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INTRODUCTION

The example of a particle constrained to move along a circle — the so-called planar rigid rotor — is one of the simplest
problems that is discussed in text-books of quantum mechanics. The beguiling simplicity of this problem is at the
heart of many non-trivial ideas that pervade modern physics. For understanding many issues like the existence of
inequivalent quantizations of a given classical system [1], the role of topology in the definition of the vacuum state in
gauge theories [2], band structure of solids [3], generalised spin and statistics of the anyonic type [4], and the study of
mathematically interesting algebras of quantum observables on spaces with non-trivial topology [5], the problem of a
particle on a circle serves as a toy model.

In this paper, we consider the problem of a particle constrained to move on a torus knot. Besides adding a new
twist to the aforementioned problems, the present system can be thought of as a double-rotor (analogous to the
double-pendulum, but without the gravitational field) which is a genuine non-planar generalization of the planar
rotor.

The paper is organised as follows: In the next section we introduce toroidal coordinates in terms of which the
constraints which restrict the motion of the particle to the torus knot are most naturally incorporated. As a warm-up,
we then analyse the particle on a circle in toroidal coordinates. This prelude allows us to compare and contrast the
results of the subsequent sections with the well-known results for the particle on a circle. The following two sections
deal with the classical and quantum mechanics of a particle on a torus knot. In the penultimate section we briefly
touch upon the possibility of inequivalent quantizations of the particle on a knot. These will be labelled by two
parameters, in contrast to the particle on a circle. The concluding section summarises and presents an outlook.

TOROIDAL COORDINATES

The toroidal coordinates [6] are denoted by 0 < n < 0o, —7m <0 <7, 0<¢ <27 Given a toroidal surface
of major radius R and minor radius d, we introduce a dimensional parameter a, defined by a? = R? — d?, and a
dimensionless parameter 79, defined by ny = coshfl(R/ d). The equation 1 = constant, say 79, defines a toroidal
surface. The combination R/d is called the aspect ratio. Clearly, larger 1y corresponds to smaller thickness of the
torus. In the limit 79 — oo, the torus degenerates into a limit circle.

The toroidal coordinates are related to the usual Cartesian coordinates by the equations

asinhncosg asinhnsing asinf

(coshn — cosf)’ (coshn — cosf)’ (coshn — cosf)
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